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Event-history Analysis: Selectivity

1. Introduction

The general purpose of the analysis of event history
data is to explain why certain individuals are at a
higher risk of experiencing the event(s) of interest than
others. This can be accomplished by using special
types of methods which, depending on the field in
which they are applied, are called failure-time models,
life-time models, survival models, transition-rate
models, response-time models, event history models,
duration models, or hazard models. Here, the terms

event history model and hazard model are used
interchangeably.

In hazard models, the risk of experiencing an event
within a short time interval is regressed on a set of
covariates. Two special features distinguish hazard
models from other types of regression models: they
make it possible to include censored observations in
the analysis and to use time-varying explanatory
variables. Censoring is, in fact, a form of partially
missing information: On the one hand, it is known that
the event did not occur during a given period of time,
but, on the other hand, the time at which the event
occurred is unknown. Time-varying covariates are
covariates that may change their value during the
observation period. The possibility of including co-
variates which may change their value in the regression
model makes it possible to perform a truly dynamic
analysis.

In the context of the analysis of survival and event
history data, the problem of unobserved heterogen-
eity, or the bias caused by not being able to include
particular important explanatory variables in the
regression model, has received a great deal of atten-
tion. This is not surprising because this phenom-
enon, which is also referred to as selectivity or frailty,
may have a much larger impact in hazard models than
in other types of regression models: Unobserved
heterogeneity may introduce, among other things,
downwards bias in the time effects, spurious effects of
time-varying covariates, spurious time-covariate in-
teraction effects, as well as dependence between
competing risks and repeatable events. This may be
true even if the unobserved heterogeneity is uncor-
related with the values of the observed covariates at
the start of the process under study. Several model-
based approaches have been proposed to correct for
unobserved heterogeneity.

2. State, E�ent, Duration, and Risk Period

In order to understand the nature of even history data
and the purpose of event history analysis, it is
important to understand the following four elemen-
tary concepts: state, event, duration, and risk period.
These concepts are illustrated below using an example
from the analyses of marital histories.

The first step in the analysis of event histories is to
define the relevant states which are distinguished. The
states are the categories of the ‘dependent’ variable the
dynamics of which we want to explain. At every
particular point in time, each person occupies exactly
one state. In the analysis of marital histories, four
states are generally distinguished: never married,
married, divorced, and widow(er). The set of possible
states is sometimes also called the state space.

An event is a transition from one state to another,
that is, from an origin state to a destination state. In
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this context, a possible event is ‘first marriage,’ which
can be defined as the transition from the origin state,
never married, to the destination state, married. Other
possible events are: a divorce, becoming a widow(er),
and a non-first marriage. It is important to note that
the states which are distinguished determine the
definition of possible events. If only the states married
and notmarriedwere distinguished, none of the above-
mentioned events could have been defined. In that
case, the only events that could be defined would be
marriage and marriage dissolution.

Another important concept is the risk period.
Clearly, not all persons can experience each of the
events under study at every point in time. To be able to
experience a particular event, one must occupy the
origin state defining the event, that is, one must be at
risk of the event concerned. The period that someone
is at risk of a particular event, or exposed to a
particular risk, is called the risk period. For example,
someone can only experience a divorce when he or she
is married. Thus, only married persons are at risk of a
divorce. Furthermore, the risk period(s) for a divorce
are the period(s) that a subject is married. A strongly
related concept is the risk set. The risk set at a
particular point in time is formed by all subjects who
are at risk of experiencing the event concerned at that
point in time.

Using these concepts, event history analysis can be
defined as the analysis of the duration of the non-
occurrence of an event during the risk period. When
the event of interest is ‘first marriage,’ the analysis
concerns the duration of nonoccurrence of a first
marriage, in other words, the time that individuals
remained in the state of never being married. In
practice, as will be demonstrated below, the dependent
variable in event history models is not duration or time
itself but a rate. Therefore, event history analysis can
also be defined as the analysis of rates of occurrence of
the event during the risk period. In the first marriage
example, an event history model concerns a person’s
marriage rate during the period that he}she is in the
state of never having been married.

3. Basic Statistical Concepts

The manner in which the basic statistical concepts of
event history models are defined depends on whether
the time variable T, indicating the duration of non-
occurrence of an event, is assumed to be continuous or
discrete. Even though it seems logical to assume T to
be a continuous variable, in many situations this
assumption is not realistic. First, it may happen that
T is not measured accurately enough to be treated as
strictly continuous. This occurs, for example, when the
duration variable in a study on the timing of the first
birth is measured in completed years instead of months
or days. Second, the events of interest can sometimes

only occur at particular points in time. Such an
intrinsically discrete T occurs, for example, in studies
on voting behavior.

Suppose that we are interested in explaining in-
dividual differences in women’s timing of the first
birth. In that case, the event is having a first child,
which can be defined as the transition from the origin
state, no children, to the destination state, one child.
This is an example of what is called a single non-
repeatable event, where the term single reflects that the
origin state no children can only be left by one type of
event, and the term non-repeatable indicates that the
event can occur only once. Below, situations in which
there are several types of events (multiple risks) and in
which events may occur more than once (repeatable
events) are presented. In the first birth example, it
seems most appropriate to assume the time variable to
be a continuous variable although it is, of course,
measured discrete, for instance, in days, months, or
years after a woman’s 15th birthday.

Suppose T is a continuous random variable indicat-
ing the duration of nonoccurrence of the first birth.
Let f (t) be the probability density function of T, and
F (t) the distribution function of T. As always the
following relationships exist between these two
quantities,

f (t)¯ lim
∆t!!

P(t%T! t­∆t)

∆t
¯

¦F (t)

¦t

F (t)¯P(T% t)¯& t

!

f (u)d (u)

The survival probability or survival function, indicting
the probability of nonoccurrence of an event until time
t, is defined as

S(t)¯ 1®F (t)¯P(T& t)¯&
¢

t

f (u)d (u)

Another important concept is the hazard rate or
hazard function, h(t), expressing the instantaneous
risk of experiencing an event at T¯ t, given that the
event did not occur before t. The hazard rate is defined
as

h(t)¯ lim
∆t!!

P(t%T! t­∆t rT& t)

∆t
¯

f (t)

S(t)

in which P(t% T! t­∆t rT& t) indicates the prob-
ability that the event will occur during
[t% T! t­∆t], given that the event did not occur
before t. The hazard rate is equal to the unconditional
instantaneous probability of having an event at T¯ t,
f (t), divided by the probability of not having an event
before T¯ t, S(t). It should be noted that the hazard
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rate itself cannot be interpreted as a conditional
probability. Although its value is always non-negative,
it can take values greater than one. However, for small
∆t, the quantity h(t)∆t can be interpreted as the
approximate conditional probability that the event
will occur between t and t­∆t.

Above h(t) was defined as a function of f (t) and S(t).
It is also possible to express S(t) and f (t) completely in
terms of h(t), that is,

S(t)¯ exp

E

F

®& t

!

h(u)d (u)

G

H

f (t)¯ h(t)S(t)¯ h(t) exp

E

F

®& t

!

h(u)d (u)

G

H

This shows that the functions f (t), F (t), S(t), and h(t)
give mathematically equivalent specifications of the
distribution of T.

4. Log-linear Models for the Hazard rate

When working within a continuous-time framework,
the most appropriate method for regressing the time
variable T on a set of covariates is through the hazard
rate. This makes it straightforward to assess the effects
of time-varying covariates—including the time de-
pendence itself and time-covariate interactions—and
to deal with censored observations. Censoring is a
form of missing data that is explained in more detail
below.

Let h(t rx
i
) be the hazard rate at T¯ t for an

individual with covariate vector x
i
. Since the hazard

rate can take on values between 0 and infinity, most
hazard models are based on a log transformation of
the hazard rate, which yields a regression model of the
form

logh(t rx
i
)¯ logh(t)­3

j

β
j
χ
ij

(1)

This hazard model is not only log-linear but also
proportional. In proportional hazard models, the
time-dependence is multiplicative (additive after tak-
ing logs) and independent of an individual’s covariate
values. Below it will be shown how to specify non-
proportional log-linear hazard models by including
time-covariate interactions.

The various types of continuous-time log-linear
hazard models are defined by the functional form that
is chosen for the time dependence, that is, for the term
logh(t). In Cox’s semi-parametric model, the time
dependence is left unspecified (Cox 1972). Exponential
models assume the hazard rate to be constant over
time, while piecewise exponential model assume the

hazard rate to be a step function of T, that is, constant
within time periods. Other examples of parametric
log-linear hazard models are Weibull, Gompertz and
polynomial models.

As was demonstrated by several authors (Laird and
Oliver 1981, Vermunt 1997, pp. 106–17), log-linear
hazard models can also be defined as log-linear
Poisson models, which are also known as log-rate
models. Assume that we have—besides the event
history information—two categorical covariates de-
noted by A and B. In addition, assume that the time
axis is divided into a limited number of time-intervals
in which the hazard rate is postulated to be constant.
In the first birth example, this could be one-year
intervals. The discretized time variable is denoted by
Z. Let h

abz
denote the constant hazard rate in the zth

time interval for an individual with A¯ a and B¯ b.
To see the similarity with standard log-linear models,
it should be noted that the hazard rate, sometimes
referred to as occurrence-exposure rate, can also be
defined as h

abz
¯m

abz
}E

abz
. Here, m

abz
denotes the

expected number of occurrences of the event of interest
and E

abz
the total exposure time in cell (a, b, z).

Using the notation of hierarchical log-linear models,
the saturated log-linear model for the hazard rate h

abz

can now be written as

logh
abz

¯ u­uA

a
­uB

b
­uZ

z
­uAB

ab
­uAZ

az
­uBZ

bz
­uABZ

abz
(2)

in which the u terms are log-linear parameters which
are constrained in the usual way, for instance, by
means of ANOVA-like restrictions. Note that this is a
non-proportional model because of the presence of
time-covariate interactions. Restricted variants of
model described in equation (2) can be obtained by
omitting some of the higher-order interaction terms.
For example,

logh
abz

¯ u­uA

a
­uB

b
­uZ

z

yields a model that is similar to the proportional log-
linear hazard model described in equation (1). In
addition, different types of hazard models can be
obtained by the specification of the time-dependence.
Setting the uZ

z
terms equal to zero yields an exponential

model. Unrestricted uZ

z
parameters yield a piecewise

exponential model. Other parametric models can be
approximated by defining the uZ

z
terms to be some

function of Z. And finally, if there are as many time
intervals as observed survival times and if the time
dependence of the hazard rate is not restricted, one
obtains a Cox regression model. Log-rate models can
be estimated using standard programs for log-linear
analysis using E

abz
as a weight vector (Vermunt 1997,

p. 112).
Unobserved heterogeneity or selectivity may bias

the results obtained from the hazard models discussed
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Table 1
Hazard rates illustrating the effect of unobserved heterogeneity

Time
point

A¯ 1 A¯ 2
Ratio between

A¯ 2 and A¯ 1W¯ 1 W¯ 2 observed W¯ 1 W¯ 2 observed

0 0.010 0.050 0.030 0.020 0.100 0.060 2.00
10 0.010 0.050 0.026 0.020 0.100 0.045 1.73
20 0.010 0.050 0.023 0.020 0.100 0.034 1.50
30 0.010 0.050 0.019 0.020 0.100 0.027 1.39

so far in various ways. The best-known implication is
the negative bias of the time dependence. Other
implications are that covariate effects may be biased
(underestimated) and that one may find spurious time-
covariate interactions.

We will illustrate the effects of unobserved het-
erogeneity with a small example. Suppose that the
population under study consists of two subgroups
formed by the two levels of an observed covariate A,
where for an average individual with A¯ 2 the hazard
rate is twice as high as for someone with A¯ 1. In
addition, assume that within each of the levels of A
there is (unobserved) heterogeneity in the sense that
there are two subgroups W¯ 1 and W¯ 2, where W
¯ 2 has a 5 times higher hazard rate than W¯ 1.
Table 1 shows the assumed hazard rates for each of the
possible A–W combinations at four time points. As
can be seen, the true hazard rates do not change over
time given A and W. The reported hazard rates in the
columns labeled ‘observed,’ which were obtained by
setting up a simple life table, show what happens if we
do not observe W. First, it can be seen that both for A
¯ 1 and A¯ 2 the observed hazard rates decline over
time while the true rates were time constant. This
illustrates the fact that unobserved heterogeneity
biases the estimated time dependence in a negative
direction. Second, while the ratio between the hazard
rates for A¯ 2 and A¯ 1 equals the true value 2.00 at
t¯ 0, it declines over time (see last column). Thus,
when estimating a hazard model with these observed
hazard rates, we will find a smaller effect of A than the
true value of (log) 2.00. Third, in order to describe
fully the pattern of observed hazard rates, we need to
include a time-covariate interaction in the hazard
model: the covariate effect changes (declines) over
time or, equivalently, the (negative) time effect is
smaller for A¯ 1 than for A¯ 2.

5. Censoring

A subject that always receives a great amount of
attention in discussions on event history analysis is the
problem of censoring. An observation is called cen-
sored if it is known that is did not experience the event
of interest during some time, but it is not known when

it experienced the event. In fact, censoring is a specific
type of missing data. In the first-birth example, a
censored case could be a woman which is 30 years of
age at the time of interview (and has no follow-up
interview) and does not have children. For such a
woman, it is known that she did not have a child until
age 30, but it is not known whether nor when she will
have her first child. This is, actually, an example of
what is called right censoring. Another type of
censoring that is more difficult to deal with is left
censoring. Left censoring means that we do not have
information on the duration of nonoccurrence of the
event before the start of the observation period.

As long as it can be assumed that the censoring
mechanism is not related to the process under study,
dealing with right censored observations in maximum
likelihood estimation of the parameters of hazard
models is straightforward. Let δ

i
be a censoring

indicator taking the value 0 if observation i is censored
and 1 if it is not censored. The contribution of case i to
the likelihood function that must be maximized when
there are censored observations is

,
i
¯ h(t

i
rx

i
)δ

iS (t
i
rx

i
)

¯ h(t
i
rx

i
)δ

i exp

E

F

®& t
i

!

h(u rx
i
)du)

G

H

This likelihood function is, however, only valid if the
censoring mechanism can be ignored for likelihood-
based inference. The presence of unobserved het-
erogeneity that is shared by the process of interest and
the censoring process will lead to a violation of the
assumption that censoring is ignorable.

6. Time-�arying Co�ariates

A strong point of hazard models is that one can use
time-varying covariates. These are covariates that may
change their value over time. Examples of interesting
time-varying covariates in the first-birth example are a
woman’s marital and work status. It should be noted
that, in fact, the time variable and interactions between
time and time-constant covariates are time-varying
covariates as well.
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The saturated log-rate model described in equation
(2), contains both time effects and time-covariate
interaction terms. Inclusion of ordinary time-varying
covariates does not change the structure of this hazard
model. The only implication of, for instance, covariate
B being time varying rather than time constant is that
in the computation of the matrix with exposure times
E

abz
it has to taken into account that individuals can

switch from one level of B to another.
The presence of unobserved heterogeneity may

seriously bias the effects of time-varying covariates.
More precisely, the effects of time-varying covariates
may be partially spurious as a result of the presence of
unobserved risk factors influencing both the covariate
process and the dependent process. An example of an
association that may be partially spurious is the
association between a woman’s labor participation
and the first birth rate. In several studies, it has been
found that women who are not employed have higher
first birth rates than women who are employed. This
association may, however, be partially the result of
unobserved causes that work and fertility behavior
have in common, such as certain gender role attitudes.

7. Multiple Risks

Thus far, only hazard rate models for situations in
which there is only one destination state were con-
sidered. In many applications it may, however, prove
necessary to distinguish between different types of
events or risks. In the analysis of the first-union
formation, for instance, it may be relevant to make a
distinction between marriage and cohabitation. In the
analysis of death rates, one may want to distinguish
different causes of death. And in the analysis of the
length of employment spells, it may be of interest to
make a distinction between the events voluntary job
change, involuntary job change, redundancy, and
leaving the labor force.

The standard method for dealing with situations
where—as a result of the fact that there is more than
one possible destination state—individuals may ex-
perience different types of events is the use of a
multiple-risk or competing-risk model. A multiple-
risk variant of the hazard rate model described in
equation (1) is

logh
d
(t rx

i
)¯ logh

d
(t)­3

j

β
jd
χ
ij

Here, the index d indicates the destination state or the
type of event. As can be seen, the only thing that
changes compared with the single type of event
situation is that we have a separate set of time and
covariate effects for each type of event.

Again the presence of unobserved heterogeneity
may distort the results obtained from the hazard

model. More precisely, if the different types of events
have shared unmeasured risk factors, the results for
each of the types of events have shared unmeasured
risks factors, the results for each of the types of events
is only valid under the observed hazard rates for the
other risks. In fact, the resulting dependence among
risks is comparable to what in the field of discrete
choice modeling is known as the violation of the
assumption of independence of irrelevant alternatives.

8. Repeatable E�ents and Other Types of
Multi�ariate E�ent Histories

Most events studied in social sciences are repeatable,
and most event history data contains information on
repeatable events for each individual. This is in
contrast to biomedical research, where the event of
greatest interest is death. Examples of repeatable
events are job changes, having children, arrests,
accidents, promotions, and residential moves.

Often events are not only repeatable but also of
different types, that is, we have a multiple-state
situation. When people can move through a sequence
of states, events cannot only be characterized by their
destination state, as in competing risks models, but
they may also differ with respect to their origin state.
An example is an individual’s employment history: an
individual can move through the states of employ-
ment, unemployment, and out of the labor force. In
that case, six different kinds of transitions can be
distinguished which differ with regard to their origin
and destination states. Of course, all types of tran-
sitions can occur more than once. Other examples are
people’s union histories with the states living with
parents, living alone, unmarried cohabitation, and
married cohabitation, or people’s residential histories
with different regions as states.

Hazard models for analyzing data on repeatable
events and multiple-state data are special cases of the
general family of multivariate hazard rate models.
Another application of these multivariate hazard
models is the simultaneous analysis of different life-
course events. For instance, it can be of interest to
investigate the relationships between women’s repro-
ductive, relational, and employment careers, not only
by means of the inclusion of time-varying covariates in
the hazard model, but also by explicitly modeling their
mutual interdependence.

Another application of multivariate hazard models
is the analysis of dependent or clustered observations.
Observations are clustered, or dependent, when there
are observations from individuals belonging to the
same group or when there are several similar observa-
tions per individual. Examples are the occupational
careers of spouses, educational careers of brothers,
child mortality of children in the same family, or in
medical experiments, measures of the sense of sight of
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both eyes or measures of the presence of cancer cells in
different parts of the body. In fact, data on repeatable
events can also be classified under this type of
multivariate event history data, since in that case there
is more than one observation of the same type for each
observational unit as well.

The hazard rate model can easily be generalized to
situations in which there are several origin and
destination states and in which there may be more
than one event per observational unit. The only thing
that changes is that we need indices for the origin state
(o), the destination state (d ), and the rank number of
the event (m). A log-linear hazard rate model for such
a situation is

loghm

od
(t rx

i
)¯ loghm

od
(t)­3

j

βm

jod
χ
ij

The different types of multivariate event history
data have in common that there are dependencies
among the observed survival times. These dependen-
cies may take several forms: the occurrence of one
event may influence the occurrence of another event;
events may be dependent as a result of common
antecedents; and survival times may be correlated
because they are the result of the same causal process,
with the same antecedents and the same parameters
determining the occurrence or nonoccurrence of an
event. If these common risk factors are not observed,
the assumption of statistical independence of ob-
servation is violated, which may seriously distort the
results.

9. Model-based Approaches to Unobser�ed
Heterogeneity

As described in the previous sections, unobserved
heterogeneity may have different types of con-
sequences in hazard modeling. The best-known
phenomenon is the downwards bias of the duration
dependence. In addition, it may bias covariate effects,
time-covariate interactions, and effects of time-
varying covariates. Other possible consequences are
dependent censoring, dependent competing risks, and
dependent observations. This section presents two
types of methods that have been proposed for correct-
ing for unobserved heterogeneity: random-effects and
fixed-effects methods.

9.1 Random-effects Approach

The random-effects approach is based on the in-
troduction of a time-constant latent covariate in the
hazard model (Vaupel et al. 1979). This unobserved

variable is assumed to have a multiplicative and
proportional effect on the hazard rate, i.e.,

logh(t rx
i
, θ

i
)¯ logh(t)­3

j

β
j
χ
ij
­logθ

i

Here, θ
i
denotes the value of the latent variable for

subject i. In the parametric random-effects approach,
the latent variable is postulated to have a particular
distributional form. The amount of unobserved het-
erogeneity is determined by the size of the standard
deviation of this distribution: The larger the standard
deviation of θ

i
or logθ

i
, the more unobserved het-

erogeneity there is. Vaupel et al. (1979) proposed using
a gamma distribution for θ

i
, with a mean of 1 and a

variance of 1}γ, where γ is the unknown parameter to
be estimated. Another option would be to assume
logθ

i
to come from a normal distribution with mean

zero and standard deviation σ.
Heckman and Singer (1982) demonstrated that the

results obtained from continuous-time hazard models
can be sensitive to the choice of the functional form of
the distribution of the random effect. Therefore, they
advocated using a nonparametric characterization of
this distribution by means of a finite set of mass points
whose number, locations, and weights are empirically
determined. The nonparametric random-effects mod-
el proposed by Heckman and Singer is, actually, a
latent class or finite mixture model. As in latent class
analysis, the population is assumed to be composed of
a finite number of exhaustive and mutually exclusive
groups formed by the categories of an unobserved
variable. Suppose W is a categorical latent variable
with W* categories, and w is a particular value of W.
The model of Heckman and Singer can be formulated
as follows:

logh(t rx
i
, θ

w
)¯ logh(t)­3

j

β
j
χ
ij
­logθ

w

Here, θ
w

denotes the (multiplicative) effect on the
hazard rate for latent class w. The contribution of the
ith subject to the likelihood function in the case of a
single non-repeatable event is

,
i
¯ 3

W*

w="

π
w
h(t

i
rx

i
, θ

w
)δ

iS(t
i
rx

i
, θ

w
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where π
w
is the proportion of the population belonging

to latent class w. In the terminology used by Heckman
and Singer (1982), the number of latent classes (W *),
the latent proportions (π

w
), and the effects of W(θ

w
) are

called the number of mass points, the weights, and the
mass points locations, respectively.

The most important drawback of the parametric
and nonparametric random-effects approaches to
unobserved heterogeneity is that the latent variable is
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assumed to be independent of the observed covariates.
This is, in fact, in contradiction to the omitted
variables argument that is often used to motivate the
use of these types of mixture models. If one assumes
that particular important variables are not included in
the model, it is usually implausible to assume that they
are completely unrelated to the observed factors. In
other words, by assuming independence among un-
observed and observed factors, the omitted variable
bias, or selection bias, will generally remain
(Chamberlain 1985, Yamaguchi 1986, 1991, p.132).
To overcome the limitations of the standard random-
effects approaches, Vermunt (1997) proposed a more
general nonparametric latent variable approach to
unobserved heterogeneity. It differs from Heckman
and Singer’s method in that different types of specifi-
cations can be used for the joint distribution of the
observed covariates, the unobserved covariates, and
the initial state. This makes it possible to specify
hazard models in which the unobserved factors are
related to the observed covariates and to the initial
state.

9.2 Fixed-effects Approach

A second method for dealing with unobserved het-
erogeneity involves adding cluster-specific effects, or
incidental parameters, to the model (Chamberlain
1985, Yamaguchi 1986). In fact, a categorical variable
is included in the hazard model indicating to which
cluster a particular observation belongs: observations
belonging to the same cluster have the same value for
this ‘observed’ variable while observations belonging
to different clusters have different values. This ap-
proach to unobserved heterogeneity, which is called
the fixed-effects approach, can only be applied with
multivariate survival data, that is, when there is more
than one observation for the largest part of the
observational units. Note that actually the unobserved
heterogeneity is transformed into a form of observed
heterogeneity capturing the similarity among observa-
tions belonging to the same cluster.

The advantage of using fixed-effects methods to
correct for unobserved heterogeneity is that they
circumvent two objections against random-effects
methods presented above: No functional form needs
to be specified for the distribution of the unobserved
heterogeneity and the unobserved heterogeneity is
automatically related to both the initial state and the
time-constant covariates.

The major limitation of the fixed-effects approach is
that since each cluster has its own incidental par-
ameter, no parameter estimates can be obtained for
the effects of covariates having the same value for the
different observations belonging to the same cluster:
Only the effects of observation-specific or of time-
varying covariates can be estimated. Another problem

is that the incidental parameters cannot be estimated
consistently, since by definition they are based on a
limited number of observations regardless of the
sample size. This inconsistency may be carried over to
the other parameters if the parameters are estimated
by means of maximum likelihood (Yamaguchi 1986).

See also: Event History Analysis: Applications; Event-
history Analysis in Continuous Time
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Event-related/Evoked Potentials

The term event-related potential (ERP) refers to
changes in the brain’s electrical activity locked in time
to an externally defined event. ERPs have been used
since the early 1960s, when they were usually referred
to as ‘evoked potentials,’ to investigate sensorimotor
and cognitive function in healthy and clinical popu-
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