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Introduction

A statistical model can be called a latent class (LC) or
mixture model if it assumes that some of its parameters
differ across unobserved subgroups, LCs, or mixture com-
ponents. This rather general idea has several seemingly
unrelated applications, the most important of which are
clustering, scaling, density estimation, and random-effects
modeling. It should be noted that in applied fields, the
terms LC model and mixture model are often used inter-
changeably, which is also what is done here. In the more
technical statistical literature on mixture modeling, the
term LC analysis is reserved for a specific type of mixture
model, that is, a mixture model for a set of categorical
items (for the classical LC model).

LC analysis was introduced in 1950 by Lazarsfeld as a
tool for building typologies (or clustering) based on dichot-
omous observed variables (Lazarsfeld, 1950). More than
20 years later, Goodman (1974) made this model applica-
ble in practice by developing an algorithm for obtaining
maximum-likelihood estimates of the model parameters,
as well as proposed extensions for polytomous manifest
variables and did important work on the issue of model
identification. Many important extensions of this classical
LC model have been proposed since then, such as models
containing explanatory variables (Dayton and Macready,
1988), models that relax the local-independence assump-
tion (Hagenaars, 1988), constrained models similar to item
response theory (IRT) models (Lindsay et al., 1991; Heinen,
1996), models with multiple latent variables (Magidson and
Vermunt, 2001), models for longitudinal data (Van de Pol
and Langeheine, 1990), and models for multilevel data
(Vermunt, 2003).

Whereas this classical LC model and its extensions are
conceived primarily as a clustering and scaling tool for
categorical data analysis, LC and finite-mixture models
can be useful in several other areas as well. One of these
is as a probabilistic cluster-analysis tool for continuous
observed variables, an approach that offers many advan-
tages over traditional cluster techniques such as K-means
clustering (Wolfe, 1970; McLachlan and Peel, 2000;
Vermunt and Magidson, 2002). Another application area
is dealing with unobserved heterogeneity, as happens in
mixture regression analysis of multilevel or repeated-
measurement data (Wedel and DeSarbo, 1994; Vermunt
and Van Dijk, 2001).

The remainder of this article is organized as follows.
After introducing the simplest type of LC models, various
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restricted LC models as well as models with explanatory
variables are discussed. Next, an overview of other types of
LC and mixture models, which includes various recently
proposed extensions, is presented. In the end, attention is
paid to parameter estimation,model selection, and software.
Simple LC and Mixture Models

LC analysis is typically used as a tool for analyzing multi-
variate response data; that is, data consisting of several
dependent variables, response variables, or items.We denote
the response of subject i on dependent variable j by yij , and
the number of dependent variables by J. The full-response
vector of a subject is denoted by yi. To make things more
concrete, Table 1 presents a small illustrative data set
consisting of three dichotomous responses, yi1, yi2, and yi3
(0 ¼ incorrect; 1 ¼ correct). This is a subset of items from
a mathematics test administered to 2156 children. The
frequency column contains the observed frequency count
for each of the eight possible answer patterns.

In addition to the J observed dependent variables, an
LC model contains a discrete latent variable. We denote a
subject’s unobserved score on this latent variable by ni, the
number of LCs by C, and a particular class by c, where
c ¼ 1, 2, . . . , C. The aim of an LC analysis of the data set
in Table 1 could be to classify pupils into two groups,
masters and nonmasters, which differ with respect to the
probability of answering the test items correctly. The
results obtained with a two-class model will be used to
illustrate the various components of an LC model.

LC analysis defines a model for f ðyiÞ, the probability
density of the multivariate response vector yi. In the above
example, this is the probability of answering the items
according to one of the eight possible response patterns,
for example, of answering the first two items correctly and
the last one incorrectly, which as can be seen in Table 1
equals 0.161 for the estimated two-class model. The
assumption underlying any type of LC or mixture
model is that the density f ðyiÞ is a weighted average (or
mixture) of the C class-specific densities f ð yi jni ¼ cÞ.
This is expressed mathematically as follows:

f ðyiÞ ¼
XC
c¼1

Pðni ¼ cÞ f ðyi jni ¼ cÞ: ½1�

Here, Pðni ¼ cÞ denotes the probability that a subject
belongs to LC c. For our small empirical example, the
estimates of these (prior) class membership probabilities
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Table 2 Parameters (class proportions and probability

of a correct answer) obtained with two-class model for data in
Table 1

c ¼ 1 c ¼ 2

Pðni ¼ cÞ 0.601 0.399
p11c ¼ Pðyi1 ¼ 1jni ¼ cÞ 0.844 0.252

p21c ¼ Pðyi2 ¼ 1jni ¼ cÞ 0.912 0.499

p31c ¼ Pðyi3 ¼ 1jni ¼ cÞ 0.730 0.273

Table 1 Small data set with three dichotomous responses

yi1 yi2 yi3 Frequency f( yijni ¼ 1) f( yijni ¼ 2) f( yi) f(ni ¼ 1| yi) f(ni ¼ 2| yi) Modal

0 0 0 239 0.004 0.272 0.111 0.020 0.980 2

0 0 1 101 0.010 0.102 0.047 0.128 0.872 2
0 1 0 283 0.038 0.271 0.131 0.175 0.825 2

0 1 1 222 0.104 0.102 0.103 0.605 0.395 1

1 0 0 105 0.020 0.092 0.049 0.248 0.753 2

1 0 1 100 0.054 0.035 0.046 0.703 0.297 1
1 1 0 348 0.208 0.091 0.161 0.774 0.226 1

1 1 1 758 0.562 0.034 0.352 0.961 0.039 1
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are 0.601 and 0.399 for classes 1 and 2, respectively (see
Table 2). The assumed mechanism by eqn [1] is that each
individual belongs to one of C exhaustive and mutually
exclusive classes with probability Pðni ¼ cÞ and that
given membership of LC c one provides responses accord-
ing to the probability density associated to this class.
Table 1 shows the estimated values of f ðyi jni ¼ 1Þ and
f ðyi jni ¼ 2Þ for our data sets. As can be seen, LC 1 has
higher probabilities for the response patterns with 2 or 3
correctly answered items, whereas class 2 has higher prob-
abilities for the response patterns with 0 or 1 item correct.

The classical LC model combines the assumption of
eqn [1] shared by all mixture models with the assumption
of local independence. Local independence means that
the J responses are mutually independent given a sub-
ject’s class membership. It can be expressed as follows:

f ðyi jni ¼ cÞ ¼
YJ
j¼1

f ð yij jni ¼ cÞ: ½2�

Independence implies that the joint density
f ðyi jni ¼ cÞ is obtained as a product of the J item-specific
densities f ð yij jni ¼ cÞ. In our example f ð yij ¼ 1jni ¼ cÞ
is the class-specific probability of giving a correct answer
to item j. As reported in Table 2, for a subject belonging
to the first LC, these equal 0.844, 0.912, and 0.730 for items
1, 2, and 3, respectively. The local independence assump-
tion implies, for example, that the probability of answering
the first two items correctly and the last one incorrectly for
someone in LC one equals 0.844 � 0.912 �(1–0.730) ¼
0.208. Note that the local independence assumption is
also used in other types of latent variables models, such
as in factor analysis and IRT modeling, and is thus not
specific for LC analysis.

Combining the two basic eqns [1] and [2] yields the
following model for f ðyiÞ:

f ðyiÞ ¼
Xc

c¼1

Pðni ¼ cÞ
YJ
j¼1

f ð yij jni ¼ cÞ: ½3�

To complete the model specification, we need to define
the form of the conditional densities f ð yij jni ¼ cÞ. In the
classical LC model for categorical items, these are multi-
nomial probability densities; that is,
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f ð yij jni ¼ cÞ ¼
YRj�1

r¼0

p
y�ijr

jrc ;

where Rj is the number of categories of item j,
0 � yij � Rj � 1, and y�ijr ¼ 1 if yij ¼ r and 0 otherwise.
Note this is a slightly complicated, but mathematically
elegant, way to express that someone in LC c has a
probability equal to pjrc ¼ Pð yij ¼ r jni ¼ cÞ of giving
response r to item j. In the special case of a dichotomous
response, the multinomial distribution reduces to the
Bernoulli distribution with success probability pjc ¼
pj1c ¼ P( yij ¼ 1|ni ¼ c). Table 2 presents these pro-
babilities for our small example.

It is important to note that LC models cannot only be
used with categorical responses, but also with continuous
responses and counts. The density f ð yij jni ¼ cÞ could be
a binomial, Poisson, or negative binomial distribution for
counts, and a normal or gamma distribution for continu-
ous responses. The mixture model for continuous re-
sponse variables is sometimes referred to as the latent
profile model. The parameters of this model are the
class proportions and class-specific item means and var-
iances (mjc and �2

jc).
By comparing the J sets of item parameters across

classes, one can name the classes. The parameter esti-
mates presented in Table 2 show that the first class can
be named the masters because pupils belonging to that
class have much higher probabilities of answering the test
items correctly than pupils belonging to the second non-
masters class.

Similar to cluster analysis, one of the purposes of
LC analysis might be to assign individuals to LCs.
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The probability of belonging to LC c given responses yi –
often referred to as posterior membership probability – can
be obtained by the Bayes rule:

Pðni ¼ cjyiÞ ¼
Pðni ¼ cÞf ðyi jni ¼ cÞ

f ðyiÞ
: ½4�

Table 1 reports Pðni ¼ cjyiÞ for each answer pattern.
For example, Pðni ¼ 1jyiÞ equals 0.774 for the (1,1,0)
pattern, which is obtained as 0.601�0.208/0.161. The
most common classification rule is modal assignment,
which amounts to assigning each individual to the LC
with the highest f ðni ¼ cjyiÞ. The last column of Table 1
reporting the modal assignments shows that pupils with at
least two correct answers are assigned to class 1 and the
others to class 2.

In the introduction, we stated that mixture models are
statistical models in which parameters are assumed to
differ across LCs. But what is the statistical model used
in the simple LC models discussed so far? It is the inde-
pendence model: we assume responses to be independent,
with different parameter values for each class. Depending
on the scale type of the response variables, these para-
meters are Bernoulli probabilities, multinomial probabil-
ities, normal means and variances, Poisson rates, etc.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 Parameters (class proportions and probability of a

correct answer) obtained with proctor model for data in Table 1

c ¼ 1 c ¼ 2 c ¼ 3 c ¼ 4

Pðni ¼ cÞ 0.160 0.155 0.126 0.559

p21c ¼ Pðyi2 ¼ 1jni ¼ cÞ 0.167 0.833 0.833 0.833

p11c ¼ Pðyi1 ¼ 1jni ¼ cÞ 0.167 0.167 0.833 0.833

p31c ¼ Pðyi3 ¼ 1jni ¼ cÞ 0.167 0.167 0.167 0.833

 
 
 

 
 
 
 
 

Generalized Linear Models for Item
Probabilities/Means

Haberman (1979) showed that the LC model for categor-
ical response variables can also be specified as a log-linear
model for an expanded table, including the latent variable
ni as an additional dimension. Using such a log-linear
specification is equivalent to parameterizing the response
probability for item j as follows:

log
pjrc
pj 0c

� �
¼ log

Pð yij ¼ r jni ¼ cÞ
Pð yij ¼ 0jni ¼ cÞ

� �
¼ ajr þ bjcr ; ½5�

for 1 � r � Rj � 1; that is, as a multinomial logistic
regression models with intercepts ajr and slopes bjcr (note
that we use the first item category, r ¼ 0, as baseline). One
identification constraint needs to be imposed, for example,
bj 1r ¼ 0 (the parameters for class 1 are fixed to 0) or
ajr ¼ 0 (intercepts are fixed to 0).

For dichotomous responses and binomial counts, the
regression model could be a binary logit or probit model,
for Poisson counts a log-linear model, and for continuous
responses a standard linear model. These are generalized
linear models (GLMs) of the form

g Eð yij jni ¼ cÞ� � ¼ aj þ bjc ; ½6�
where g �½ � is the link function transforming the expected
value of yij to the linear term. For ordinal polytomous
variables, one may use an ordinal regression model,
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such as an adjacent-category or cumulative logit model.
These are models that restrict the item response prob-
abilities pjrc .
Some Restricted Models for Categorical
Items

Many interesting types of restricted LC models for cate-
gorical items have been proposed, which involve imposing
(linear) constraints on either the conditional probabilities
pjrc or the logit coefficients of eqn [5]. One of these is the
probabilistic Guttman scaling model for dichotomous
responses, which is an LC model with C ¼ J þ 1 classes,
one for each possible total score. The idea is that apart
from measurement error, class c should provide a negative
answer to the c – 1 easiest items and a positive answer to
the remaining J – (c – 1) items. The various types of
probabilistic Guttman models differ in the constraints
they impose on the measurement error. The simplest
and most restricted model is the Proctor (1970) model.
Table 3 presents the parameter estimates obtained when
fitting the Proctor model to the data set inTable 1. As can
be seen, the probability of a correct response is either
0.833 or 0.167 ¼ 1 – 0.833. The measurement error – or
the probability of giving a response which is not in agree-
ment with the class – is estimated to be equal to 0.167.
Whereas the Proctor model assumes that the measure-
ment error is constant across items and classes, less-
restricted models can be defined which allow the error
probabilities to differ across items, classes, or both (see,
e.g., Dayton, 1999). Note that these equality constraints
on the error probabilities can also be defined using lin-
ear constraints on the logit parameters: aj 1 ¼ 0 and
bj 1c ¼ �b� for c � j and bjc ¼ b� otherwise.

Croon (1990) proposed a restricted LC model that
similar to nonparametric IRT (Sijtsma and Molenaar,
2000) assumes monotonic item response functions; that
is, pj 1c � pj 1;cþ1; or, equivalently, bj 1c � bj 1;cþ1. A more
restricted version, in which not only classes but also items
are ordered, is obtained by imposing the additional set of
restriction pjþ11c � pj 1c ; that is, by assuming double
monotony. Vermunt (2001) has discussed various general-
izations of these models.
cation (2010), vol. 7, pp. 238-244 
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Various authors described the connection between
restricted LC analysis and parametric IRT modeling
(see, e.g., Heinen, 1996; Lindsay et al., 1991); that is, IRT
models with a discrete specification of the distribution of
the underlying trait or ability can be defined as LC
models with restrictions on the logistic parameters. The
key restriction is bjrc ¼ b�jr � yc for nominal items and
bjrc ¼ b�j � r � yc for ordinal items, where yc are LC loca-
tions representing the C possible values of the discretized
latent trait. These locations may be fixed a priori, for
example, at �2, �1, 0, 1, and 2 in the case of C ¼ 5, but
may also be treated as free parameters to be estimated.
Depending on whether the items are dichotomous, ordi-
nal, or nominal, this yields a 2-parameter logistic,
generalized partial credit, or nominal response model.
Further restrictions involve equating b�j across items,
yielding Rasch and partial credit models, and imposing
across-category and across-item restrictions on ajr para-
meters as in rating scale models for ordinal items.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Models with Explanatory Variables

The most important extension of the LC models dis-
cussed so far is the possibility to include explanatory
variables affecting the responses (Wedel and DeSarbo,
1994) or the class memberships (Dayton and Macready,
1988). Denoting the vector with explanatory variables for
subject i by xi, the LC model of interest can be formulated
as follows:

f ðyi jxiÞ ¼
XC
c¼1

Pðni ¼ cjxiÞ
Yji
j¼1

f ð yij jni ¼ c; xij Þ: ½7�

The main difference compared to the model defined in
eqn [3] is that now we have a model for f ðyi jxiÞ � the
conditional density of yi given xi .

Similar to the regression models for the response vari-
ables introduced in eqns [5] and [6], one can define a mix-
ture regression model with explanatory variables; that is,

g Eð yij jni ¼ c; xij Þ
� � ¼ ac þ

XP
p¼1

bpc xijp: ½8�

As before, yij may refer to the response on item j by

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pupil i, in which case the explanatory variables will con-
sist of a design matrix defining the item parameters.
However, the model in eqn [8] can also be used for
many other purposes. In fact, it is a model for analyzing
two-level data sets, where regression parameters are
allowed to differ across LCs (of higher-level units). For
example, yij could be the test score of pupil j belonging to
school i, and xij a set of pupil characteristics (e.g., intelli-
gence quotient (IQ)). A mixture regression model would
identify LCs of schools with different intercepts and
different effects of child characteristics on the test scores.
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Another possible application is in the analysis of longitu-
dinal data, where j is a time point for subject i, and where
vector xij contains time variables. This yields a LC growth
model in which subjects are grouped based on their
developmental trajectories (Vermunt, 2007). A last possi-
ble application that can be mentioned is in experiments in
which subjects are observed in multiple conditions, such
as in conjoint studies. The mixture regression model can
be used to group subjects based on their reactions on the
experimental conditions. In fact, in each of these applica-
tion types, the LC model is used as a random-coefficient
model without parametric assumptions about the distri-
bution of the random effects (Aitkin, 1999; Vermunt and
Van Dijk, 2001).

As shown in eqn [7], an individual’s class membership
may also be predicted using covariates. This is achieved
by defining a multinomial logistic regression model for
Pðni ¼ cjxiÞ:

log
Pðni ¼ cjxiÞ
Pðni ¼ 1jxiÞ ¼ g0r þ

XQ
q¼1

gpc xiq:

Strongly related are multiple-group LC models. These
can be defined using the grouping variable as a nominal
explanatory in the model.
Extensions

The most common model-fitting strategy in LC analy-
sis is to increase the number of classes until the local-
independence assumption holds. This may, however, yield
solutions which are difficult to interpret. One alternative
approach is to relax the local-independence assumption
by allowing for associations between particular item pairs.
Hagenaars (1988) showed how to define LC models with
local dependencies for categorical responses. With con-
tinuous responses, this is easily achieved using multivari-
ate instead of univariate normal distributions for locally
dependent items (see, e.g., McLachlan and Peel, 2000;
Vermunt and Magidson, 2002).

Another alternative strategy involves increasing the
number of discrete latent variables instead of the number
of LCs, which is especially useful if the items measure
several dimensions. This so-called discrete-factor model-
ing approach (Magidson and Vermunt, 2001) is a special
case of the path-modeling approach for discrete latent
variables developed by Hagenaars (1990) and Vermunt
(1997). Many other interesting models can be defined
within this framework, such as latent Markov models
for the analysis of longitudinal data (Van de Pol and
Langeheine, 1990) and LC models for cognitive diagnosis
(De la Torre and Douglas, 2004).

Recently, models have been developed that contain
both discrete and continuous latent variables. Examples of
these are mixture factor models (Yung, 1997; McLachlan
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and Peel, 2000), mixture structural equation models
(Dolan and Van der Maas, 1997), and mixture IRTmodels
(Rost, 1990).

Probably the most recent extension is the multilevel
LC model (Vermunt, 2003). One of its variants is a model
with discrete latent variables at multiple levels of a hier-
archical structure: for example, children belong to LCs
with different performances on a set of test items, and
schools belong to LCs with different distributions of chil-
dren across the child-level performance classes. Multi-
level LC models can be used for the analysis of two-level
multivariate and three-level univariate response data.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Maximum Likelihood Estimation

The parameters of LC models are typically estimated by
means of maximum likelihood (ML). The log-likelihood
function that is maximized is based on the probability
densities defined in eqns [1–3]; that is,

In L ¼
XN
i¼1

In f ðyiÞ:

With categorical responses one will typically group the
data and construct a frequency table as we did in Table 1.
The log-likelihood function for grouped data equals

In L ¼
XK
k¼1

nk In f ðykÞ;

where k is a data pattern, K the number of different data
patterns. and nk the cell count corresponding to data
pattern k. Notice that only nonzero observed cell entries
contribute to the log-likelihood function, a feature that is
exploited by several more efficient LC software packages
that have been developed within the past few years.

One of the problems in the estimation of LC models for
discrete yij is that model parameters may be nonidentified,
even if the number of degrees of freedom – the number of
independent cells in the J-way cross-tabulation minus the
number of free parameters – is larger or equal to zero.
Nonidentification means that different sets of parameter
values yield the same maximum of the log-likelihood func-
tion or, worded differently, that there is no unique set of
parameter estimates. The formal identification check is via
the Jacobian matrix (matrix of first derivatives of f ðyiÞ),
which should be column full rank. Another option is to
estimate the model of interest with different sets of starting
values. Except for local solutions (see below), an identified
model gives the same final estimates for each set of the
starting values.

Although there are no general rules with respect to the
identification of LC models, it is possible to provide
certain minimal requirements and point to possible pit-
falls. For an unrestricted LC analysis, one needs at least
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three responses ( yij ’s) per individual, but if these are
dichotomous, no more than two LCs can be identified.
One has to watch out with four dichotomous response
variables, in which case the unrestricted three-class model
is not identified, even though it has a positive number of
degrees of freedom. With five dichotomous items, how-
ever, even a five-class model is identified. Usually, it is
possible to achieve identification by constraining certain
model parameters.

A second problem associated with the estimation of
LC models is the presence of local maxima. The log-
likelihood function of an LC model is not always concave,
which means that hill-climbing algorithms may converge
to a different maximum depending on the starting values.
Usually, we are looking for the global maximum. The best
way to proceed is, therefore, to estimate the model with
different sets of random starting values. Typically, several
sets converge to the same highest log-likelihood value,
which can then be assumed to be the ML solution. Some
software packages have automated the use of multiple sets
of random starting values to reduce the probability of
getting a local solution.

Another problem in LC modeling is the occurrence
of boundary solutions, which are probabilities equal to
0 (or 1) or logit parameters equal to minus (or plus)
infinity. These may cause numerical problems in the
estimation algorithms, occurrence of local solutions, and
complications in the computation of standard errors and
number of degrees of freedom of the goodness-of-fit tests.
Boundary solutions can be prevented by imposing con-
straints or by taking into account other kinds of prior
information on the model parameters.

The most popular methods for solving the ML estima-
tion problem are the expectation–maximization (EM) and
Newton–Raphson (NR) algorithms. EM is a very stable
iterative method for ML estimation with incomplete data.
NR is a faster procedure that, however, needs good start-
ing values to converge. The latter method makes use
of the matrix of second-order derivatives of the log-
likelihood function, which is also needed for obtaining
standard errors of the model parameters.
Model Selection Issues

The goodness-of-fit of LC models for categorical
responses can be tested using Pearson and likelihood-
ratio chi-squared tests. The latter is defined as

L2 ¼ 2
XK
k¼1

nk In
nk

N � f ð ykÞ:

As in log-linear analysis, the number of degrees of
freedom (df ) equals the number of cells in the freq-
uency table minus 1, minus the number of independent
parameters. In an unrestricted LC model,
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df ¼
YJ
j¼1

Rj � C � 1þ
XJ
j¼1

ðRj � 1Þ
" #

:

Although it is no problem to estimate LC models with
10, 20, or 50 indicators, in such cases, the frequency table
may become very sparse and, as a result, asymptotic
p-values can no longer be trusted. An elegant but some-
what time-consuming solution to this problem is to esti-
mate the p-values by parametric bootstrapping. Another
option is to assess model fit in lower order marginal tables
(e.g., in the two-way marginal tables).

Even though models with C and C þ 1 are nested, one
cannot test them against each other using a standard
likelihood-ratio test because it does not have an asymp-
totic chi-squared distribution. A way out to this problem
is to approximate its sampling distribution using boot-
strapping. But since this method is computationally de-
manding, usually alternative methods are required for
comparing models with different numbers of classes.
One popular method is the use of information criteria
such as the Bayesian information criterion (BIC) and
Akaike information criterion (AIC). Another more de-
scriptive method is a measure for the proportion of total
association accounted for by a C-class model, [L2(1)–
L2(C)]/L2(1), where the L2 value of the one-class (inde-
pendence) model, L2(1), is used as a measure of total
association in the J-way frequency table.

Usually, we are not only interested in goodness-of-fit
but also in the performance of the modal classification
rule (see eqn [4]). The estimated proportion of classifica-
tion errors under modal classification equals

E ¼
XN
i¼1

1

N
1�max Pðni ¼ cjyiÞ

� �� �
:

This number can be compared to the proportion of
classification errors based on the unconditional probabil-
ities Pðni ¼ cÞ, yielding a reduction of errors measure

l ¼ 1� E

1�max Pðni ¼ cÞ½ �:

The closer this nominal R2-type measure is to 1, the
better the classification performance of a model. Other
types of classification error-reduction measures have
been proposed based on entropy or qualitative variance.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Software

One of the first LC analysis programs, maximum likeli-
hood latent structure analysis (MLLSA), made available
by Clifford Clogg in 1977, was limited to a relatively small
number of nominal variables. Today’s programs can han-
dle many more variables, as well as other scale types.
For example, the LEM program (Vermunt, 1997) provides
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a command language that can be used to specify a large
variety of models for categorical data, including LCmodels.
Mplus is a command-language-based structural-equation
modeling package that implements many types of LC and
mixture models. In addition, routines for the estimation
of specific types of LC models are available as SAS, R,
and Stata macros (see, e.g., Lanza et al., 2007; Skrondal and
Rabe-Hesketh, 2004).

Latent GOLD is a program that was especially devel-
oped for LC analysis, and which contains both an SPSS-
like point and click-user interface and a syntax language.
It implements all important types of LC models, such as
models for response variables of different scale types,
restricted LC models, models with predictors, models
with local dependencies, models with multiple discrete
latent variables, LC path models, LC Markov models,
mixture factor analysis and IRT, and multilevel LC mod-
els, as well as features for dealing with partially missing
data, for performing bootstrapping, and for dealing with
complex samples.
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