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INTRODUCTION

In the context of the analysis of survival and event history data, the problem of unobserved

heterogeneity, or the bias caused by not being able to include particular important

explanatory variables in the regression model, has received a great deal of attention (see, for

instance, Vaupel, Manton, and Stallard 1979; Heckman and Singer 1982, 1984; Trussell and

Richards 1985; Chamberlain 1985; Yamaguchi 1986; Mare 1994; Guo and Rodriguez 1994).

The reason for this is that this phenomenon has a much larger impact in hazard models than

in other types of regression models: Unobserved heterogeneity may introduce, among other

things, downwards bias in the time effects, spurious effects of time-varying covariates,

spurious time-covariate interaction effects, and dependence among competing risks and

repeatable events. This may be true even if the unobserved heterogeneity is uncorrelated with

the values of the observed covariates at the start of the process under study.

The models which have been proposed to correct for unobserved heterogeneity differ mainly

with respect to the assumptions made about the distribution of the latent variable capturing

the unobserved heterogeneity. Heckman and Singer (1982, 1984) proposed a non-parametric

random-effects approach which is strongly related to latent class analysis (LCA). Vermunt

(1996a, 1997) proposed extending their latent class (LC) approach by specifying
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simultaneously with the event history model a system of logit models (or causal log-linear

model) for the covariates. By explicitly modeling the relationships among the observed and

unobserved covariates, it becomes possible to relax and test some of the assumptions which

are generally made about the nature of the unobserved heterogeneity. Models can be specified

in which the unobserved heterogeneity is related to observed (time-varying) covariates, in

which the unobserved heterogeneity itself is time-varying, and in which there are several

mutually related latent covariates.

The next section explains event history analysis by means of hazard models paying special

attention to situations in which unobserved heterogeneity may distort the results.

Subsequently, methods for dealing with unobserved heterogeneity are presented, including the

standard and the extended LC approach. The presented LC methodology is illustrated by two

empirical examples.

EVENT HISTORY ANALYSIS

The purpose of event history analysis is to explain differences in the time at which individuals

experience the events under study. The best way to define an event is as a transition from a

particular origin state to a particular destination state. The time variables indicating the

duration of nonoccurrence of the events of interest may either be discrete or continuous

variables. Although because of space limitations here we deal solely with continuous-time

methods, the results can easily be generalized to discrete-time situations (Vermunt 1997).

Textbooks on event history and survival analysis are Kalbfleisch and Prentice (1980), Tuma

and Hannan (1984), Allison (1984), Lancaster (1990), Yamaguchi (1991), Blossfeld and

Rohwer (1995), and Vermunt (1997).

Suppose that we are interested in explaining individual differences in women’s timing of the
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first birth. In that case, the event is having a firth child, which can be defined as the

transition from the origin state no children to the destination state one child. This an

example of what is called a single non-repeatable event. The term single refers to the fact

that the origin state no children can only be left by one type of transition. The term

non-repeatable indicates that the event can occur only once. Below, situations in which there

are several types of events (multiple risks) and in which events may occur more than once

(repeatable events) are presented. In the first birth example, it seems most appropriate to

assume the time variable to be a continuous variable although it is, of course, measured

discrete, for instance, in days, months, or years after a woman’s 15th birthday.

Basic concepts

Suppose T is a continuous random variable indicating the duration of nonoccurrence of the

first birth. Let f(t) be the probability density function of T , and F (t) the distribution

function of T . As always, the following relationships exist between these two quantities,

f(t) = lim
∆t→0

P (t ≤ T < t + ∆t)

∆t
=

∂F (t)

∂t
,

F (t) = P (T ≤ t) =
∫ t

0
f(u)d(u) .

The survival probability or survival function, indicating the probability of nonoccurrence of

an event until time t, is defined as

S(t) = 1− F (t) = P (T ≥ t) =
∫ ∞

t
f(u)d(u) .

Another important concept is the hazard rate or hazard function, h(t), expressing the

instantaneous risk of experiencing an event at T = t, given that the event did not occur before

t. The hazard rate is defined as

h(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t)

∆t
=

f(t)

S(t)
,
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in which P (t ≤ T < t + ∆t|T ≥ t) indicates the probability that the event will occur during

[t ≤ T < t + ∆t], given that the event did not occur before t. The hazard rate is equal to the

unconditional instantaneous probability of having an event at T = t, f(t), divided by the

probability of not having an event before T = t, S(t). It should be noted that the hazard rate

itself cannot be interpreted as a conditional probability. Although its value is always

non-negative, it can take values greater than one. However, for small ∆t, the quantity h(t)∆t

can be interpreted as the approximate conditional probability that the event will occur

between t and t + ∆t.

Above h(t) was defined as a function of f(t) and S(t). It is also possible to express S(t) and

f(t) completely in terms of h(t), that is,

S(t) = exp
(
−

∫ t

0
h(u)d(u)

)
,

f(t) = h(t)S(t) = h(t) exp
(
−

∫ t

0
h(u)d(u)

)
.

This shows that the functions f(t), F (t), S(t), and h(t) give mathematically equivalent

specifications of the distribution of T .

Log-linear models for the hazard rate

When working within a continuous-time framework, the most appropriate method for

regressing the time variable T on a set of covariates is through the hazard rate. This makes is

straightforward to assess the effects of time-varying covariates – including the time

dependence itself and time-covariate interactions – and to deal with censored observations

(Yamaguchi 1991: 10-11; Vermunt 1997: 91-92). Censoring is a form of missing data which is

explained in more detail below.

Let h(t|xi) be the hazard rate at T = t for an individual with covariate vector xi. Since the

hazard rate can take on values between 0 and infinity, most hazard models are based on a log
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transformation of the hazard rate, which yields a regression model of the form

log h(t|xi) = log h(t) +
∑
j

βjxij .

This hazard model is not only log-linear but also proportional. In proportional hazard

models, the time-dependence is multiplicative and independent of an individual’s covariate

values (Lancaster 1990: 42-43). Below it will be shown how to specify non-proportional

log-linear hazard models by including time-covariate interactions.

The various types of log-linear continuous-time hazard models are defined by the functional

form that is chosen for the time dependence, that is, for the term log h(t). In Cox’s model,

the time dependence is treated in a non-parametric way (Cox, 1972). Exponential models

assume the hazard rate to be constant over time, while piecewise exponential model assume

the hazard rate to be a step function of T , that is, constant within time periods. Other

examples of parametric log-linear hazard models are Weibull, Gompertz, and polynomial

models (Blossfeld and Rohwer 1995).

As was demonstrated by several authors (Holford 1980; Laird and Oliver 1981; Clogg and

Eliason 1987; Vermunt 1997: 106-117), log-linear hazard models can also be defined as

log-linear Poisson models, which are also known as log-rate models. Assume that we have –

besides the event history information – two categorical covariates denoted by A and B. In

addition, assume that the time axis is divided into a limited number of time-intervals in which

the hazard rate is postulated to be constant. In the first birth example, this could be one-year

intervals. The discretized time variable is denote by Z. Let habz denote the constant hazard

rate in the zth time interval for an individual with A = a and B = b. To see the similarity

with standard log-linear models, it should be noted that the log hazard rate can also be

written as

log habz = log(mabz/Eabz)
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where mabz denotes the expected number of events and Eabz the total exposure time in cell

(a, b, z). Using the notation of hierarchical log-linear models, the saturated log-linear model

for the hazard rate habz can be written as

log habz = u + uA
a + uB

b + uZ
z + uAB

ab + uAZ
az + uBZ

bz + uABZ
abz , (1)

in which the u terms are log-linear parameters which are constrained in the usual way, for

instance, by means of ANOVA-like restrictions. It should be noted that this is a

non-proportional model as a result of the presence of time-covariate interactions.

As the standard log-linear model, the log-rate model can be formulated in a more general way

using a design matrix, i.e.,

log habz =
∑
j

βjxabzj . (2)

These log-rate models can be estimated using standard programs for log-linear analysis using

Eabz as a weight vector (Vermunt 1997: 112).

Restricted variants of the (saturated) model described in equation 1 can be obtained by

omitting some of the higher-order interaction terms. For example,

log habz = u + uA
a + uB

b + uZ
z

yields a model that is similar to the proportional log-linear hazard model described in

equation ??. Different types of hazard models can be obtained by the specification of the

time-dependence. Setting the uZ
z terms equal to zero yields an exponential model.

Unrestricted uZ
z parameters yield a piecewise exponential model. Other parametric models

can be approximated by defining the uZ
z terms to be some function of Z (or T ) (Yamaguchi

1991: 75-77). An approximate Gompertz model, for instance, is obtained by linearly

restricting the effect of Z (or T ) in a similar way as in log-linear association models (Clogg

1982). And finally, if there are as many time intervals as observed survival times and if the
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time dependence of the hazard rate is not restricted, one obtains a Cox regression model

(Laird Olivier 1981; Vermunt 1997: 113-115).

The presence of unobserved heterogeneity may bias the results obtained from the hazard

models discussed so far in various ways (Yamaguchi 1986; Vermunt 1997: 140-141). The

best-known phenomenon is the downwards bias of the time dependence that occurs even if –

at T = 0 – the unobserved factors are uncorrelated with the values of covariates included in

the model (Vaupel, Manton, and Stallard 1979; Heckman and Singer 1982, 1984). In such

situations, covariate effects will be biased as well since the unobserved variables and the

observed variable become correlated after T = 0. When the unobserved factors are related

with some of the covariates at T = 0, that is, when there is some form of selection bias, not

only the effects of the covariates concerned are biased, but also spurious time-covariate

interactions will be found.

Censoring

A subject that always receives a great amount of attention in discussions on event history

analysis is the problem of censoring (Yamaguchi 1991: 3-9; Guo 1993; Vermunt 1997:117-130).

An observation is called censored if it is known that it did not experience the event of interest

during some time, but it is not known when it experienced the event. In fact, censoring is a

specific type of missing data. In the first-birth example, a censored case could be a woman

which is 30 years of age at the time of interview (and has no follow-up interview) and does

not have children. For such a woman, it is known that she did not have a child until age 30,

but be it not known whether nor when she will have her first child.

This is, actually, an example of what is called right censoring. Left censoring means that it is

known that the event did not occur, but the exact length of the period that the case

concerned did not experience the event is unknown. Left censoring is more difficult to deal
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with than right censoring (Guo 1993).

As long as it can be assumed that the censoring mechanism is not related to the process

under study, dealing with censored observations in maximum likelihood estimation of the

parameters of hazard models is straightforward. Let δi be a censoring indicator taking the

value 0 if observation i is censored and 1 if it is not censored. The contribution of case i to

the likelihood function that must be maximized when there are censored observations is

Li = h(ti|xi)
δiS(ti|xi) = h(ti|xi)

δi exp
(
−

∫ ti

0
h(u|xi)du

)
.

This likelihood function is, however, only valid if the censoring mechanism can be ignored for

likelihood based inference. The presence of unobserved heterogeneity which is shared by the

process of interest and the censoring process will lead to a violation of the assumption that

censoring is ignorable.

Time-varying covariates

A strong point of hazard models is that one can use time-varying covariates. These are

covariates that may change their value over time. Examples of interesting time-varying

covariates in the first-birth example are a woman’s marital and work status. It should be

noted that, in fact, the time variable and interactions between time and time-constant

covariates are time-varying covariates as well (Kalbfleish and Prentice 1980: 121-122).

The saturated log-rate model described in equation 1, contains both time effects and

time-covariate interaction terms. Inclusion of ordinary time-varying covariates does not

change the structure of this hazard model. Suppose, for instance, that covariate B is time

varying rather than time constant. This has only implications for the matrix with exposure

times Eabz. When computing this matrix, it has to be taken into account that individuals can

change their value on B (Vermunt 1997: 144-145).
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The presence of unobserved heterogeneity may seriously bias the effects of time-varying

covariates. Above, we already mentioned the effect of unobserved risk factors on the time

dependence and on time-covariate interactions. The effects of time-varying covariates may be

partially spurious as a result of the presence of unobserved risk factors which influence both

the covariate process and the dependent process (Yamaguchi 1991: 134-139; Vermunt 1997:

140-141).

Multiple risks

Thus far, only hazard rate models for situations in which there is only one destination state

were considered. In many applications it may, however, prove necessary to distinguish between

different types of events or risks. In the analysis of the first-union formation, for instance, it

may be relevant to make a distinction between marriage and cohabitation. In the analysis of

death rates, one may want to distinguish different causes of death. And in the analysis of the

length of employment spells, it may be of interest to make a distinction between the events

voluntary job change, involuntary job change, redundancy, and leaving the labor force.

The standard method for dealing with situations where – as a result of the fact that there is

more than one possible destination state – individuals may experience different types of

events is the use of a multiple-risk or competing-risk model. For a discussion of the various

types of multiple-risk situations, see Allison (1984:42-44) or Vermunt (1997:146-150). A

multiple-risk variant of the general log-rate model described in equation 2 is

log habzd =
∑
j

βdjxabzdj .

Here D is a variable indicating the destination state or the type of event that one has

experienced. As can be seen, this variable can be used in the hazard model in the same way

as the other variables. Note that the index d is used in the parameters and the elements of
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the design matrix to indicate that the covariate and time effects may be risk dependent.

Again the presence of unobserved heterogeneity may distort the results obtained from the

hazard model. More precisely, if the different types of events have shared unmeasured risks

factors, the results for each of the types of events is only valid under the observed hazard

rates for the other risks. In fact, the resulting dependence among risks is comparable to what

in the field of discrete choice modeling is known as the violation of the assumption of

independence of irrelevant alternatives (Hill, Axinn, and Thornton 1993).

Multivariate hazard models

Most events studied in social sciences are repeatable, and most event history data contains

information on repeatable events for each individual. This is in contrast to biomedical

research, where the event of greatest interest is death. Examples of repeatable events are job

changes, having children, arrests, accidents, promotions, and residential moves.

Often events are not only repeatable but also of different types, that is, we have a

multiple-state situation. When people can move through a sequence of states, events cannot

only be characterized by their destination state, as in competing risks models, but they may

also differ with respect to their origin state. An example is an individual’s employment

history: an individual can move through the states of employment, unemployment, and out of

the labor force. In that case, six different kinds of transitions can be distinguished which

differ with regard to their origin and destination states. Of course, all types of transitions can

occur more than once. Other examples are people’s union histories with the states living with

parents, living alone, unmarried cohabitation, and married cohabitation, or people’s

residential histories with different regions as states. Special multiple-state models are the

well-known Markov and semi-Markov chain models (Tuma and Hannan 1984: 91-115).

Hazard models for analyzing data on repeatable events and multiple-state data are special
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cases of the general family of multivariate hazard rate models. Another application of these

multivariate hazard models is the simultaneous analysis of different life-course events, or as

Willekens (1989) calls it, parallel careers. For instance, it can be of interest to investigate the

relationships between women’s reproductive, relational, and employment careers, not only by

means of the inclusion of time-varying covariates in the hazard model, but also by explicitly

modeling their mutual interdependence.

Another application of multivariate hazard models is the analysis of dependent or clustered

observations. Observations are clustered, or dependent, when there are observations from

individuals belonging to the same group or when there are several similar observations per

individual. Examples are the occupational careers of spouses, educational careers of brothers

(Mare 1994), child mortality of children in the same family (Guo and Rodriguez 1994), or in

medical experiments, measures of the sense of sight of both eyes or measures of the presence

of cancer cells in different parts of the body. In fact, data on repeatable events can also be

classified under this type of multivariate event history data, since in that case there is more

than one observation of the same type for each observational unit as well.

The log-rate model can easily be generalized to situations in which there are several origin

and destination states and in which there may be more than one event per observational unit

(Vermunt 1997: 169). The only thing we need to do is to define – besides the covariates and

the time variables – variables indicating the origin state (O), the destination state (D), and

the rank number of the event (M). The general log-rate model for such a situation is of the

form

log habzodm =
∑
j

βodmjxabzodmj . (3)

Of course, notation could be simplified by replacing the variables D, O, and M by a single

variable indicating the type of event defined by origin, destination, and rank number.
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The different types of multivariate event history data have in common that there are

dependencies among the observed survival times. These dependencies may take several forms.

The occurrence of one event may influence the occurrence of another event. Events may be

dependent as a result of common antecedents. And, survival times may be correlated because

they are the result of the same causal process, with the same antecedents and the same

parameters determining the occurrence or nonoccurrence of an event. If these common risk

factors are not observed, the assumption of statistical independence of observation is violated,

which may seriously distort the results. This is, actually, the same type of problem that

motivated the development of multi-level models (Goldstein 1987; Bryk and Raudenbuch

1992).

DEALING WITH UNOBSERVED HETEROGENEITY

As described in the previous section, unobserved heterogeneity may have different types of

consequences in hazard modeling. The best-known phenomenon is the downwards bias of the

duration dependence. In addition, it may bias covariate effects, time-covariate interactions,

and effects of time-varying covariates. Other possible consequences are dependent censoring,

dependent competing risks, and dependent observations.

There are two main types of methods that have been proposed for correcting for unobserved

heterogeneity: random-effects and fixed-effects methods. Below these two methods are

described and a more general non-parametric random-effects method is presented.

Random-effects approach

The random-effects approach is based on the introduction of a time-constant latent covariate

in the hazard model (Vaupel, Manton and Stallard 1979). The latent variable is assumed to
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have a multiplicative and proportional effect on the hazard rate, i.e.,

log h(t|xi, θi) = log h(t) +
∑
j

βjxij + log θi

Here, θi denotes the value of the latent variable for subject i. In the parametric

random-effects approach, the latent variable is postulated to have a particular distributional

form. The amount of unobserved heterogeneity is determined by the size of the standard

deviation of this distribution: The larger the standard deviation of θ, the more unobserved

heterogeneity there is.

Vaupel, Manton, and Stallard (1979) proposed using a gamma distribution for θ, with a mean

of 1 and a variance of 1/γ, where γ is the unknown parameter to be estimated. Several other

authors have proposed incorporating a gamma distributed multiplicative random term in

hazard models (Tuma, and Hannan 1984: 177-179; Lancaster 1990: 65-70). According to

Vaupel, Manton and Stallard (1979), the gamma distribution was chosen because it is

analytically tractable and readily computational. Moreover, it is a flexible distribution that

takes on a variety of shapes as the dispersion parameter γ varies: When γ = 1, it is identical

to the well-known exponential distribution; when γ is large, it assumes a bell-shaped form

reminiscent of a normal distribution.

Heckman and Singer (1982, 1984) demonstrated by an analysis of one particular data set that

the results obtained from continuous-time hazard models can be very sensitive to the choice of

the functional form of the mixture distribution. Therefore, they proposed using a

non-parametric characterization of the mixing distribution by means of a finite set of so-called

mass points, or points of support, whose number, locations, and weights are empirically

determined. In this approach, the continuous mixing distribution of the parametric approach

is replaced by a discrete density function defined by a set of empirically identifiable mass

points which are considered adequate to characterize fully the form of the heterogeneity.
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Often, two or three points of support suffice (Guo and Rodriguez 1994).

It should be noted that Heckman and Singer’s arguments against the use of parametric

mixing distributions have been criticized by other authors who claimed that the sensitivity of

the results to the choice of the mixture distribution was caused by the fact that Heckman and

Singer misspecified the duration dependence in the hazard model they formulated for the data

set they used to demonstrate the potentials of their non-parametric approach. Trussell and

Richards (1985) demonstrated that the results obtained with Heckman and Singer’s

non-parametric mixing distribution can severely be affected by a misspecification of the

functional form of the distribution of T .

The non-parametric unobserved heterogeneity model proposed by Heckman and Singer (1982,

1984) is strongly related to LCA. As in LCA, the population is assumed to be composed of a

finite number of exhaustive and mutually exclusive groups formed by the categories of a

latent variable. Suppose W is a categorical latent variable with W ∗ categories, and w is a

particular value of W . The non-parametric hazard model with unobserved heterogeneity can

be formulated as follows:

log h(t|xi, θw) = log h(t) +
∑
j

βjxij + log θw

Here, θw denotes the (multiplicative) effect on the hazard rate for latent class w. It should

noted that this log-linear hazard model can also be written in the form of a log-rate model

using the parameter notation from hierarchical log-linear models. This is demonstrated below

in the examples.

The contribution of the ith subject to the likelihood function which must be maximized in the

case of a single nonrepeatable event is

Li =
W ∗∑
w=1

πwh(ti|xi, θw)δiS(ti|xi, θw) ,



15

where πw is the proportion of the population belonging to latent class w. In the terminology

used by Heckman and Singer (1982), the number of latent classes (W ∗), the latent

proportions (πw), and the effects of W (θw) are called the number of mass points, the weights,

and the mass points locations, respectively.

The most important drawback of the parametric and non-parametric random-effects

approaches to unobserved heterogeneity is that the mixture distribution is assumed to be

independent of the observed covariates. This is, in fact, in contradiction to the omitted

variables argument which is often used to motivate the use of these types of mixture models.

If one assumes that particular important variables are not included in the model, it is usually

implausible to assume that they are completely unrelated to the observed factors. In other

words, by assuming independence among unobserved and observed factors, the omitted

variable bias, or selection bias, will generally remain (Chamberlain 1985; Yamaguchi 1986,

1991: 132). Below, a non-parametric random-effects approach is presented which overcomes

this weak point of the standard approaches.

The use of parametric mixture distributions is relatively simple in models for a single

non-repeatable event. However, when there is more than one (latent) survival time per

observational unit, that is, when there is a model for competing risks, a model for repeatable

events, or another type of multivariate hazard model, this is generally not true anymore. It is

not so easy to include several possibly correlated parametric latent variables in a hazard

model because that makes it necessary to specify the functional form of the multivariate

mixture distribution. Therefore, in such cases, most applications use either several mutually

independent cause, spell, or transition-specific latent variables, or one latent variable that

may have a different effect on the several cause, spell or transition-specific hazard rates. The

former approach was adopted, for instance, by Tuma and Hannan (1984:177-183), and the
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latter, for instance, by Flinn and Heckmann (1982) in a study in which they used a normal

mixture distribution. These two specifications of the unobserved factors have also been used

in models with non-parametric unobserved heterogeneity (Heckman and Singer 1985; Moon

1991). The general LC approach which is presented below makes it possible to specify models

with several mutually related latent variables without the necessity of specifying a

distributional form for their joint distribution. The joint distribution of the latent variables is

non-parametric as well and can, if necessary, be restricted by means of a log-linear

parameterization of the latent proportions.

Fixed-effects approach

A second method for dealing with unobserved heterogeneity involves adding cluster-specific

effects, or incidental parameters, to the model (Chamberlain 1985; Yamaguchi 1986). In fact,

a categorical variable is included in the hazard model which indicates to which cluster a

particular observation belongs: observations belonging to the same cluster have the same

value for this “observed” variable while observations belonging to different clusters have

different values. Thus, besides the time and covariate effects, we have to estimate a separate

parameter for each cluster.

This approach to unobserved heterogeneity, which is called the fixed-effects approach, can

only be applied with multivariate survival data, that is, when there is more than one

observation for the largest part of the observational units. Note that actually the unobserved

heterogeneity is transformed into a form of observed heterogeneity capturing the similarity

among observations belonging to the same cluster.

The advantage of using fixed-effects methods to correct for unobserved heterogeneity is that

they circumvent two objections against random-effects methods which were presented above:

No functional form needs to be specified for the (joint) distribution of the unobserved
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heterogeneity and the unobserved heterogeneity is automatically related to both the initial

state and the time-constant covariates.

The major limitation of the fixed-effects approach is that since each cluster has its own

incidental parameter, no parameter estimates can be obtained for the effects of covariates

which have the same value for the different observations belonging to the same cluster: Only

the effects of observation-specific or of time-varying covariates can be estimated. Another

problem is that the incidental parameters cannot be estimated consistently, since by definition

they are based on a limited number of observations regardless of the sample size. This

inconsistency may be carried over to the other parameters if the parameters are estimated by

means of maximum likelihood methods (Yamaguchi 1986).

General non-parametric random-effects approach

To overcome the limitations of the fixed- and random-effects approaches, Vermunt

(1997:189-256) proposed a more general non-parametric latent variable approach to

unobserved heterogeneity. The main difference between this latent variable method and

Heckman and Singer’s method is that in the former different types of specifications can be

used for the joint distribution of the observed covariates, the unobserved covariates, and the

initial state. This means that it becomes possible to specify hazard models in which the

unobserved factors are related to the observed covariates and to the initial state. A special

case is, for instance, the mover-stayer model proposed by Farewell (1982), in which the

probability of belonging to the class of stayers is regressed on a set of covariates by means of a

logit model. Moreover, when hazard models are specified with several latent covariates,

different types of specifications can be used for the relationships among the latent variables,

one of which leads to a time-varying latent variable as proposed by Böckenholt and

Langeheine (1996). By means of a multivariate hazard model, the latent covariates can also
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be related to observed time-varying covariates.

The model that is used for dealing with unobserved heterogeneity consists of two parts: a

log-linear path model in which the relationships among the time-constant observed covariates,

the initial state, and unobserved covariates are specified, and an event history model in which

the determinants of the dynamic process under study are specified.

Suppose there is a model with two time-constant observed covariates denoted by A and B and

two unobserved covariates denoted by W and Y . In the first part of the model, the

relationships between these four variables are specified by means of a log-linear path model

(Goodman 1973; Hagenaars 1990; Vermunt 1996a, 1996b, 1997). Let πabwy denote the

probability that an individual belongs to cell (a, b, w, y) of the contingency table formed by

the variables A, B, W , and Y . Specifying a modified path model for πabwy involves two

things, namely, decomposing πabwy into a set of conditional probabilities on the basis of the

assumed causal order among A, B, W , and Y , and specifying log-linear or logit models for

these conditional probabilities. At least three meaningful specifications for the causal order

among A, B, W , and Y are possible, namely, all the variables are of the same order, the

latent variables are posterior to the observed variables, and the observed variables are

posterior to the latent variables. In the first specification, πabwy is not decomposed in terms of

conditional probabilities. The second specification is obtained by

πabwy = πab πwy|ab ,

and the third one by

πabwy = πwy πab|wy .

Note that the second type of specification in which the latent variable(s) depend on covariates

was used by Clogg (1981) in his LC model with external variables.
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Suppose that the second specification is chosen. In that case, πab and πwy|ab can be restricted

by means of a non-saturated (multinomial) logit model. A possible specification of the

dependence of the unobserved covariates on the observed covariates is

πwy|ab =
exp

(
uW

w + uY
y + uAW

aw + uBW
bw

)
∑

wy exp
(
uW

w + uY
y + uAW

aw + uBW
bw

) .

Here, W depends on A and B, while Y is assumed to be independent of W and the observed

covariates. Other specifications are, for instance,

πwy|ab =
exp

(
uW

w + uY
y + uWY

wy

)
∑

wy exp
(
uW

w + uY
y + uWY

wy

) = πwy ,

where the joint latent variable is assumed to be independent of the observed variables, and

πwy|ab =
exp

(
uW

w + uY
y

)
∑

wy exp
(
uW

w + uY
y

) = πwπy ,

in which the two latent variables are mutually independent and independent of the observed

variables.

The second part of the model with non-parametric unobserved heterogeneity consists of an

event history model for the dependent process to be studied. The hazard model which is used

here is a log-rate model which, as was shown in equation 3, in its most general form involves

specifying a regression model for the hazard rate habzwyodm. As before, z serves as index for

the time variable, o for the origin state, d for the destination state, and m for the rank

number of the event.

When obtaining maximum likelihood estimates of the parameters of a hazard model with the

observed covariates A and B and latent covariates W and Y , the contribution of case i to the

likelihood function is

Li =
∑
wy

πabwyL∗i (h) ,
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in which L∗i (h) denotes the contribution of person i to the complete data likelihood function

for the hazard part of the model, and a and b are the observed values of A and B for person i.

Vermunt (1997:186-188) proposed estimating the parameters of a general class of event

history models with missing data by means of the EM algorithm. A computer program called

`EM (Vermunt 1993, 1997) has been developed in which this non-parametric random-effects

approach is implemented.

EXAMPLES

This section presents two applications of the general random-effects approach presented

above. The first application concerns a single non-repeatable event. In the second example,

there is information on the occurrence of four events for each observational unit.

Example I: first interfirm job change

In his textbook on event history analysis, Yamaguchi (1991) presented an example on

employees’ first interfirm job change to illustrate the use of log-rate models. He reported the

data taken from the 1975 Social Stratification and Mobility Survey in Japan in Table 4.1.

Here, the same data set is reanalyzed to demonstrate a number of possible specifications of

unobserved heterogeneity.

The event of interest is the first interfirm job separation experienced by the sample subjects.

The time variable is measured in years. In the analysis, the last one-year time intervals are

grouped together in the same way as Yamaguchi did, which results in 19 time intervals. It

should be noted that contrary to Yamaguchi, we do not apply a special formula for the

computation of the exposure times for the first time interval.

Besides the time variable denoted by Z, there is information on one observed covariate: firm

size (F ). The first five categories range from small firm (1) to large firm (5). Level 6 indicates
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government employees. The most general log-rate model that will be used is of the form

log hfzw = uF
f + uZ

z + uZF
zf + uW

w ,

where W is the label of the latent variable assumed to capture the unobserved heterogeneity.

The log-likelihood values, the number of parameters, as well as the BIC values for the

estimated models are reported in Table 1.

[INSERT TABLE 1 ABOUT HERE]

We will first describe the results for the models without unobserved heterogeneity. Models A

and B serve as reference points. Model A postulates that the hazard rate does not depend on

Z and F . Model B is a saturated log-rate model: It includes the main effects of Z and F and

the ZF interaction term. The comparison of these two models shows that the log-likelihood is

305 points higher in Model B using 113 additional parameters. A Cox-like model is obtained

by omitting the two-variable interaction between Z and F (Model C). With a Cox-like model

we mean a model that contains a separate parameter for each time point and that does not

contain time-covariate interactions.This model with 90 parameters less than Model B does not

perform so badly. The much lower log-likelihood values of models D and E compared to Model

C indicate that neither the time effect nor the effect of firm size can be omitted from Model C.

The estimates of time parameters of Model C showed that the hazard rate rises in the first

time periods and subsequently starts decreasing slowly. Models F and G were estimated to

test whether it is possible simplify the time dependence of the hazard rate on the basis of this

information. Model F contains only time parameters for the first and second time point,

which means that the hazard rate is assumed to be constant from time point 3 to 19. Model

G is the same as Model F except for that it contains a linear term to describe the negative

time dependence after the second time point. The comparison between Models F and G
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shows that this linear time dependence of the log hazard rate is extremely important: The

log-likelihood increases 97 points using only one additional parameter. Comparison of Model

G with the less restricted Model C and the more restricted Model D shows that Model G

captures the most important part of the time dependence. Although according to the

likelihood-ratio statistic the difference between Models C and G significant, Model G is the

preferred model according to the BIC criterion.

The observed negative time dependence after the second time point may be caused by the

presence of unobserved heterogeneity: Individuals with a lower rate of job changing remain

with their first employer and therefore the observed hazard rate declines. To test this

explanation of the negative time dependence, a model is specified with an unobserved

heterogeneity component. Model H contains a two-class latent variable which is assumed to be

independent of the observed covariate. This is, in fact, Heckman and Singer’s non-parametric

model. The other part of the specification is the same as in Model F. As can be seen from the

test results, the log-likelihood value of Model H is 72 points higher that of Model F using only

2 additional parameters. This provides evidence that the negative time dependence is at least

partially the result of the selection mechanism resulting from unobserved heterogeneity. The

comparison of the log-likelihood values of Models G an H indicates that the two-class latent

variable W does not fully describe the observed negative time dependence. Inclusion a third

latent class does, however, not lead to an improvement of the log-likelihood.

Model I relaxes one of the main assumptions that is generally made in models with

unobserved heterogeneity: the unobserved covariate W is allowed to be related to the

observed covariate F . The relationship between W and F is modeled treating W as posterior

to F , which implies that a logit model is specified for πw|f . From a substantive point of view,

this means that it is assumed that firm size determines the (unobserved) individual
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characteristics of employees. As can be seen from the increase of the log-likelihood of 24

points using 5 additional parameters, including the direct of effect F on W improves the

model a great deal. In Model J, the direct effect of F on the hazard rate is omitted. The fact

that Model J performs almost as well as Model I with 5 fewer parameters indicates that –

given the postulated causal order between F and W – there is only and indirect effect of firm

size on the hazard rate via the latent variable W .

It should be noted that, in this case, the same fit is obtained irrespective of the assumed

causal order between W and F . The interpretation of the results is, however, quite different.

If F would be assumed to be posterior to W , the results from Model J would indicate that

the effect of F on the hazard rate is spurious.

And finally, to simplify the model even more, in Model K the log-linear parameters describing

the effect of firm size on W is restricted to be linear for levels 1 to 5 of F . In fact, the log

odds of belonging to the high-risk class is assumed to linearly decrease with the size of the

firm. Because the result of Model J showed that level 6 (government) is situated between

levels 4 and 5, a separate parameter is included for this category. The resulting Model K

performs very well.

The parameter estimates of Model K indicate that class one – containing more than 60

percent of the sample – has an eleven times higher rate of an interfirm job change than class

two. The probability of belonging to class one is higher for employees of small firms than for

employees of large firms: The membership probabilities of class one for the first five levels of

the variable firm size are 0.87, 0.79, 0.67, 0.53, and 0.38, respectively. Government employees

take a position in between the two largest firm sizes (0.46).

The main substantive conclusion is that there are two types of employees: stayers and movers.

When controlling for this unobserved heterogeneity, the association between firm size and the
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risk of a job change disappears. However, there is a strong association between firm size and

being a mover or a stayer. Two plausible explanations for this phenomenon are: 1] firms of

different sizes select and contract different types of employees, or 2] firms of different sizes

offer different job conditions making employees stayers or movers. These explanation assume

that the causal effect goes from firm size to type of employee. The effect could, however, also

be reversed: people belonging to the stayer type prefer working at larger firms or governement

while movers prefer working at smaller firms.

Another substantive conclusion is that the declining risk of a job change after the second year

of employment can be attributed to unobserved heterogeneity. This is a good illustration of

the well-known phenomenon of spurious negative time dependence.

Example II: first experience with relationships

The second example concerns adolescents’ first experiences with relationships. The data are

taken from a small scale two-wave panel survey of 145 cases (Vinken 1998). In this

application, we use the information on the age at which the sample members experienced for

the first time the events ”sleeping with someone”, ”having a steady friend”, ”being very much

in love”, and ”going out”. A substantial part of the sample is censored, that is, did not

experience one or more of these events. The model that is used for each of the hazard rates

has the form of a Cox model:

log hzwm = uZM
zm + uWM

wm .

Here, M is the label for the type of event, Z for the time variable, and W for the latent

variable. As can be seen, both the time dependence and the effect of W is assumed to be

event specific.
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The purpose of the analysis is to use the dependence between the four events to construct a

latent typology. This example can either be seen as the application of LCA as a clustering

method, where the complication is that the indicators are censored survival times, or as a

method for dealing with correlated survival times. In the former case, we could use the label

LC cluster analysis and in the latter LC regression analysis (see Vermunt and Magidson 2000;

Vermunt and Magidson this volume; and Wedel and DeSarbo this volume). In a second step

of the analysis, it is checked whether it is possible to explain differences in class membership

by means of three observed covariates.

[INSERT TABLE 2 ABOUT HERE]

Table 2 reports the log-likelihood values and the number of parameters for the one, two,

three, and four class models. Although the inclusion of the second class gives the largest

improvement in log-likelihood (46 points), also the inclusion of a third and a fourth class

improves the log-likelihood. According to the BIC criterion, the two and three class models

perform equally well.

[INSERT TABLE 3 ABOUT HERE]

The results for the three-class model are presented in Table 3. The log-linear hazard

parameters show that the three identified latent classes differ clearly with respect to the

timing of the four events of interest. Class one has the lowest hazard rates for each of the four

events while class three has the highest hazard rates. This implies that the first class, which

contains 17 percent of the sample, experiences the events later than classes two and three,

while class three, which contains 41 percent of the sample, experiences the events earlier than

classes one and two. Table 3 also reports the estimates of the median ages at which the three

types experienced the events of interest. These indicate that the largest differences between
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the three types occur in the timing of events 1 (sleeping with someone) and 2 (having a

steady relationship).

Finally, a three class model was estimated in which class membership was regressed on three

dichotomous covariates by means of multinomial logit model. These covariates are youth

centrism (Y ), sex (S), and educational level (E). Youth centrism is one of the central

concepts in youth studies indicating the extent to which young people perceive their peers as

a positively valued ingroup and perceive adults as a negatively valued outgroup. The

dichotomous youth-centrism scale which is use here was construct by Vinken (1998) using

LCA.

The covariate part of the model is a logit model of the form

πw|yse =
exp

(
uW

w + uY W
yw + uSW

sw + uEW
ew

)
∑

w exp
(
uW

w + uY W
yw + uBW

sw + uEW
ew

) .

The other part of the model consist of the same multivariate hazard model as we used above.

The covariate effects are reported in Table 3, where the omitted level is used as reference

category. It can be seen that youth-centristic adolescents, girls, and lower educated belong

less often to the late type and more often to the early types. In addition, sex has a much

stronger effect on class membership than the other two covariates.

In this example, we showed that the information on the timing of four life events can be

summerized into an easy to interpret typology. The typology identified subgroups that

experience the relational events at different (median) ages. We also showed how the latent

typology can be related to covariates. It turns out that girls experience the events of interest

earlier than boys, low educated earlier than high educated, and youth-centristic earlier than

non-youth-centristic adolencents.
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FINAL REMARKS

This paper described a general non-parametric random-effects approach for dealing with

unobserved heterogeneity in the analysis of event histories. This approach, which is based on

specifying simultaneously with the hazard model a log-linear path model for the observed and

unobserved covariates, overcomes most of the weak points of the standard random- and

fixed-effects approaches. Two application were presented to demonstrate the potentials of the

new method. Many other applications can be found in Vermunt (1996, 1997), for instance, on

models for dependent competing risks, multiple-state models, models with several latent

variables, and models with spurious effects of time-varying covariates.

It must, however, be stressed that substantive arguments must determine the specification of

the nature of the unobserved heterogeneity. In the job change example, the latent covariate

was postulated to be posterior and related to the observed covariate, while in the relationship

example, the latent variable was assumed to describe the observed correlations between four

survival times. The obtained results make only sense if these are the correct specifications.

The LCA approach described here is a special case of a more general framework for dealing

with missing data problems in event history analysis proposed by Vermunt (1996, 1997).

Other forms of missing data that can be dealt with are measurement error in covariate values,

measurement error in occupied states, partially missing information in covariate values, and

partially missing information in occupied states.
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Table 1: Test results for example I

Model log-likelihood # parameters BIC1

without unobserved heterogeneity
A. {} -7261 1 14530
B. {ZF} -6956 114 14665
C. {Z, F} -7012 24 14203
D. {F} -7183 6 14410
E. {Z} -7072 19 14286
F. {Z1, Z2, F} -7123 8 14306
G. {Z1, Z2, Zlin, F} -7030 9 14129
with unobserved heterogeneity
H. {Z1, Z2, F,W} -7051 10 14215
I. {Z1, Z2, F,W}+{FW} -7027 15 14166
J. {Z1, Z2, W}+{FW} -7028 10 14132
K. {Z1, Z2, W}+{FlinW, F6W} -7031 7 14114

1. Note that the BIC we use here is computed with the log-likelihood value and

the number of parameters rather than with the L2
and the degrees of freedom.
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Table 2: Test results for example II

Model log-likelihood # parameters BIC1

A. 1 class -1279 4 2995
B. 2 classes -1233 9 2929
C. 3 classes -1220 15 2929
D. 4 classes -1209 20 2930

1. Note that the BIC we use here is computed with the log-likelihood value

and the number of parameters rather than with the L2
and the degrees of

freedom.
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Table 3: Parameter estimates for example II: three-class model

Parameter class 1 class 2 class 3
class size 0.17 0.42 0.41
log-linear hazard parameters
event 1 -1.79 -0.24 2.03
event 2 -2.14 0.20 1.92
event 3 -0.87 0.24 0.63
event 4 -0.45 -0.16 0.61
median ages
event 1 23 19 16
event 2 23 18 15
event 3 19 15 14
event 4 15 14 14
log-linear covariate effects
youth centristic -0.33 0.18 0.15
boy 1.03 -0.34 -0.68
low education -0.62 0.44 0.18
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SOFTWARE

The kinds of analyses described in this chapter can quite easily be performed with the `EM

program (Vermunt, 1997). This is the only software for LCA that recognizes the special

structure of event history data.

Another option is to use the new LCA program Latent GOLD (Vermunt and Magidson,

2000), which is a fully Windows-based program that is easier to use than `EM . In Latent

GOLD, an exponential survival model with unobserved heterogeneity should be specified as a

LC regression model for a Poisson count. With Latent GOLD’s repeated observations option,

it is possible to specify piece-wise exponential models.
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SYMBOLS

T continuous time variable
t value of the time variable
δ censoring indicator
i index to denote a particular case
f(..) density function
F (..) distribution function
S(..) survival function
h(..) or h hazard rate
x covariate vector
β model parameter
j index to denote a particular parameter
Z discretized time variable
z index for discretized time variable
A, B, C categorical covariates
a, b, c indices for categorical covariates
O variable indicating the origin state
o index for the value of origin state
D variable indicating destination state
d index for the value of destination state
M variable indicating type of event
m index for the value of type of event
E variable denoting the exposure time
u log-linear parameter
θ random effect
π probability
W, X, Y latent variables
W ∗, X∗, Y ∗ number of categories of latent variables
w, x, y indices for latent variables
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FURTHER READING

For further reading on event hisory analysis in general see Kalbfleisch and Prentice (1980),

Tuma and Hannan (1984), Allison (1984), Lancaster (1990), Yamaguchi (1991), or Blossfeld

and Rohwer (1995). For futher reading on the specific topic of this chapter see Vermunt

(1997).


