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cal sciences. Methods to perform power computations are lacking, however.
Power computations can help 1) to make an informed decision on the sam-
ple size or the number of measurement occasions required to achieve a pre-
specified power level of a statistical test, and 2) to evaluate the ability of
this test in detecting a statistically meaningful effect when indeed there is
such an effect in a population. This paper presents methods for preform-
ing power analysis in LM models. Two cases of tests of hypotheses on the
transition parameters of LM models are considered. The first case concerns
the situation where the likelihood ratio test statistic follows a chi-square dis-
tribution, implying that also the power computation can be based on this
theoretical distribution. In the second case, power needs to be computed
based on empirical distributions constructed via Monte Carlo methods. Nu-
merical studies are conducted to illustrate the proposed power computation
methods and to investigate design factors affecting the power of this test.
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Models involving latent classes are receiving increasing interest from ap-
plied researchers, not only for the analysis of cross-sectional data but also
in longitudinal studies, in which respondents are assumed to switch between
classes during the period of observation. The occurrence of these transitions
between latent classes (also called latent states) can be studied by using
latent Markov (LM) models, which are also referred to as hidden Markov
models or latent transition models (Van de Pol & De Leeuw, 1986; Rabiner,
1989; Poulsen, 1990; Collins & Wugalter, 1992; Vermunt, Langeheine, &
Bockenholt, 1999; Visser, Raijmakers, & Molenaar, 2002; Bartolucci, 2006).

This growing interest in LM models is fueled by both the progress that
has been achieved in extending the basic model (e.g., Wiggins (1973)) and
the development of various statistical packages for analyzing data using the
LM models. Extensions to the basic model include the use of time-constant
and/or time-varying covariates (Reboussin, Reboussin, Liang, & Anthony,
1998; Vermunt et al., 1999; Chung, Park, & Lanza, 2005), multiple response
variables (Langeheine & Van de Pol, 1993; Bartolucci, 2006; Wall & Li,
2009), and grouping variable(s) (Collins & Lanza, 2010). These extensions,
together with the growing number of statistical packages (e.g., Latent GOLD
(Vermunt & Magidson, 2013), Mplus (Muthén & Muthén, 1998-2012), the
R-packages dempixS4 (Visser & Speekenbrink, 2010), and the SAS procedure
PROC LTA (Lanza & Collins, 2008)) make it possible to successfully apply
LM models to many practical problems in longitudinal studies.

Despite these developments, methods to perform power computation in
LM models have received no attention in the methodological literature, as
far as we know. Likewise, in applications of LM models, hypotheses are typ-
ically tested using the likelihood ratio (LR) test without addressing power
issues. Computation of the power of statistical tests (i.e., the probability of
rejecting the null hypothesis when it is false) is, however, extremely impor-
tant for various reasons. When planning a study, power computation can
help to make an informed decision on the sample size and/or the number of
measurement occasions required for achieving a pre-specified power level for
the tests of interest. When testing a particular hypothesis, power calculation
assesses the ability of a test to detect a statistically meaningful effect when
indeed there is such an effect in a population. This is of interest when we
wish to determine the usefulness of a test.

To perform a power calculation in LM models, we not only need to take
into account the sample size, effect size, and the level of significance, but
also several other design factors. For instance, in the latent class model,
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which can be conceived of as a special case of the LM model, Gudicha et
al.(under review) showed that a test can be underpowered when associations
between latent classes and response variables are weak, that is, if the latent
classes are poorly separated. In LM models, also the sizes of the transition
probabilities are expected to affect the power. The objective of this paper
is twofold: to provide power computation methods for hypotheses regarding
the parameters of LM models and to identify design factors that affect the
power.

In general, two kinds of statistical test are of interest when using LM mod-
els. The first kind pertains to hypotheses about the number of latent states
(e.g., the test of a model with three latent states against a model with two
latent states). The second kind concerns hypotheses for the parameters of
the LM model, for example, for the transition probabilities. In this paper we
focus on the latter type of test. More specifically, we assume that the number
of states is known, and focus on equality and fixed value hypotheses for the
model parameters. These include hypotheses stating that transition proba-
bilities are constant across time points, that certain transition probabilities
are equal to 0, or that transition probabilities are equal across two groups.
We restrict ourselves to hypotheses on transition probabilities because in
most longitudinal studies hypotheses concerning state transitions over time
are the main focus of interest. Of course, in certain applications, hypotheses
about initial state and conditional response probabilities (the measurement
model) can be of particular interest as well. The power computation methods
described in this paper can be directly transferred to those situations.

As we explain in detail below, for certain hypotheses on model parame-
ters the standard asymptotic results for the LR hold, implying that power
computation can be based on asymptotic distributions. For other hypothe-
ses or, more specifically, for hypotheses stating that probabilities are equal
to 0 or 1, these asymptotic results do not hold (Bartolucci, 2006). For this
non-standard situation in which asymptotic distributions cannot be used for
power computation, we propose constructing the empirical distribution of
the LR statistic via Monte Carlo (MC) methods. Hereafter, we refer to the
former and latter situations as power computation under the standard and
non-standard case, respectively.

The remainder of the paper is organized as follows. We first introduce
the LM model and outline the most common hypotheses about the transition
parameters of this model. We then explain the LR test and its asymptotic
properties briefly. Later, power computation is presented for both the stan-
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dard and the non-standard case. In addition, we describe the design factors
that are expected to affect the power of the LR test. We also present a
numerical study to illustrate the proposed power computation methods, to
examine the effect of the design factors on the power levels, and identify
design configurations with acceptable power levels. In the final section, we
provide a discussion of the different power computation methods, as well as
recommendations for applied researchers and suggestions for future method-
ological studies.

The LM MODEL

The LM model is a probability based model, in which the observed response
patterns at a given time point is related with latent states producing these
response patterns, analogous to the latent class model. In addition, the
probability of being in a latent state at the current time point depends on
the latent state of the previous time point. The model has two sub-parts.
The first sub-part, the measurement model, enables us to identify latent
states (also called latent classes or latent subgroups) based on the observed
responses to the outcome variables. The second sub-part, the Markov model,
describes the probabilities of switching between latent states over time. The
latter model applies Markovian chains to account for the dependence between
the latent states at successive measurement occasions.

The LM model relies on two assumptions. The first is the local inde-
pendence assumption, which implies that the observed response patterns
produced at time t depend only on the current state. The second is the first-
order Markov assumption, which implies that the state occupied at time point
t depends only on the state occupied at time point t−1 (Vermunt et al., 1999;
Bartolucci, 2006). These two assumptions are specified on the measurement
and the Markov model, respectively. Below, we first introduce some notation
and then present the LM model and commonly used hypotheses about the
parameters of this model.

Let yitj be the response of subject i to the jth response variable measured
at occasion t, for i = 1, 2, 3, .., n, j = 1, 2, 3, .., p, and t = 1, 2, 3, .., T . We
denote the vector of responses for subject i at occasion t by yit, and the vector
of responses at all occasions by yi. Let us denote a discrete latent state at
time point t by Xt and its possible value by xt where xt = 1, 2, 3, ...C. Then
the probability of observing the response pattern yi can be defined as
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p(yi,Φ) =
∑
x1

∑
x2

...
∑
xT

initial state probabilities︷ ︸︸ ︷
P (X1 = x1)

T∏
t=2

transition probabilities︷ ︸︸ ︷
P (Xt = xt|Xt−1 = xt−1)

P∏
j=1

yitj|Xt = xt)︸ ︷︷ ︸
conditional response probabilities

, (1)

where Φ is the vector of model parameters.
As can be seen from equation (1), the LM model has three fundamental

sets of parameters: The initial state probabilities, P (X1 = x1), the tran-
sition probabilities, P (Xt = xt|Xt−1 = xt−1), and the conditional response
probabilities, P (yitj|Xt = xt). The initial state probabilities show the state
proportions (or sizes) at the first measurement occasion. The transition
probabilities, that is, the probabilities of switching between the states from
one measurement occasion to the next, can be conveniently collected in the
so-called transition matrix A(t), as shown below. The conditional response
probabilities provide information on the type and the strength of association
between states and the response variables.

If we set the number of states to 3, for example, the transition between
latent states at time point (t − 1) and t can be expressed using a matrix of
transition probabilities as

A(t) =


t

π1|1 π2|1 π3|1
t− 1 π1|2 π2|2 π3|2

π1|3 π2|3 π3|3

 , (2)

where the principal diagonal elements of matrix A(t) represent the probability
of staying in the same state between consecutive measurement occasions, and
the off-diagonal elements are the probabilities for switching from a particular
state at time t − 1 to another particular state at t. For instance, π1|1 =
P (Xt = 1|Xt−1 = 1) represents the probability of remaining in state 1 at the
current measurement occasion, and π3|2 = P (Xt = 3|Xt−1 = 2) represents the
probability of switching from state 2 at the previous measurement occasion
to state 3 at the current measurement occasion.
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In many research situations, we want to investigate the effect of one or
more covariates Z on the transition probabilities, for instance, the effect of a
dichotomous grouping variable (e.g., Z = 0 for the control group, and Z = 1
for the treatment group). This can be done by inserting the covariate Z into
equation (1) as follows:

p(yi,Φ|zi) =
∑
x1

∑
x2

...
∑
xT

P (X1 = x1)
∏
t

P (Xt = xt|Xt−1 = xt−1, zi)∏
j

P (yitj|Xt = xt), (3)

When covariates are included, the transition probabilities are generally
re-parameterized by specifying a multinomial logistic regression:

P (Xt = r|Xt−1 = s, zi) = πr|s =
exp (βsr + γsrzi)∑c
l=1 exp (βsl + γslzi)

. (4)

That is, in this case, we estimate the logit coefficients β and γ as parameters,
rather than the probabilities π directly.

In the next sub-section we present the most relevant hypotheses on the
transition probabilities, which can be specified by imposing linear constraints
on either the probabilities in equation (2) or the logit coefficients in equation
(4).

Hypotheses specified on transition parameters

We can distinguish several types of hypotheses on the transition parame-
ters of LM models. Table 1 contains a classification of the most commonly
used hypotheses. A first distinction concerns whether the hypothesis implies
an equality constraint (say, π1|2 = π2|1), or a fixed value constraint (say,
π1|2 = 0.3); this is shown in the first column of Table 1. Fixed value con-
straints can be further distinguished into boundary constraints, where the
parameter is fixed on a value on the boundary of the parameter space (i.e.,
zero or one for probabilities) and non-boundary constraints, where the pa-
rameter is fixed to a value inside the parameter space. This distinction is
important, because fixed value boundary constraints require non-standard
hypothesis testing and power calculation methods, as we address in detail
below. Which testing methods can be used is shown in the last column of
Table 1. Further distinctions concern whether the constraints are imposed
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Table 1: Typical hypotheses formulated on transition parameters

hypotheses
constraint on selected on whole testing

types transition parameters transition matrix methods

equality
H1

0 : πr|s = πs|r for some r, s H4
0 : A = A

′

standardH2
0 :πr|s = πk|s for some s H5

0 : A(t) = A
H3

0 :πr|s = πk|l for some r, s, k, l H6
0 : A1 = A2

fixed
value

non- H7
0 : πr|s = v, v ∈ (0, 1)

standard
boundary H8

0 : γr = 0
on H9

0 : πr|s = 0 H10
0 : A = diag{πs|s}, non-standard

boundary for some r, s for r = 1, 2, 3, ..., c

Note that A
′

denotes the transpose of matrix A, and that A(t) denotes the
transition matrix from time point t− 1 to time point t.

on a specific parameter or on the whole set of transition parameters, and
whether the constraints are imposed on the transition parameters of the ba-
sic LM model (i.e., on the probabilities) or on the transition parameters of
the LM model with covariates (i.e., on the logit coefficients).

We will now describe the hypotheses in Table 1 in more detail. H1
0 states

the probability of switching from state s to state r is equal to the prob-
ability of switching from state r to state s; H2

0 states that given state s,
the probability of a transition to state r and state k is equal; H3

0 indicates
that the probabilities in two cells of the transition matrix are equal (e.g.,
π1|2 = π4|3); H

4
0 assumes the transition matrix is symmetric (i.e., A equals

its transpose); H5
0 implies that the transition matrix is time homogeneous;

H6
0 sets the transition matrix of one group (e.g., the treatment group) equal

to that of another group (e.g., the control group); H7
0 fixes the probability

of switching from state s to state r to v, where v ∈ (0, 1) can be any user
defined value; H8

0 defines the covariate to have no effect on the probability
of switching to the state r; H9

0 sets the probability of switching from state s
to state r to 0; and H10

0 assumes the transition matrix is diagonal, meaning
that there are no changes in state over time.

It should be noted that in certain applications, hypotheses about the ini-
tial state and the conditional response probabilities may be of interest as
well (Visser et al., 2002). As for the transition probabilities, also for the

7



conditional response probabilities one may define equality and/or fixed-value
restrictions, as discussed for latent class models by Goodman (1974) and
Mooijaart and Van der Heijden (1992). This means that the distinction
between different types of hypotheses of Table 1 (i.e., equality constraints,
boundary fixed–value constraints, and non-boundary fixed–value constraints)
can analogously be applied to hypotheses about the initial state and condi-
tional response probabilities. This distinction determines the classification
as standard or non-standard case, implying the methods of power computa-
tion we present for these two cases are also applicable with hypotheses about
initial state and conditional response probabilities.

Parameter estimation

Hypothesis testing using the LR requires estimating both the restricted model
defined by the hypothesis of interest and the unrestricted model by means
of maximum likelihood. Assuming that the responses of the individuals are
identically and independently distributed, the log-likelihood for the model
defined in equation (1) (also for equation (3)) can be specified as

l(Φ) =
∑
i

log (p(yi)), (5)

As in other latent class and mixture models, maximum likelihood estimates
of the parameters of LM models can be obtained using the expectation max-
imization (EM) algorithm. This is an iterative method which alternates
between the E step in which the expected value of the complete data log-
likelihood – the log-likelihood if the latent states would be observed – con-
ditional on the observed data and the current parameter estimates is com-
puted, and the M step in which the parameter are updated by maximizing
the expected complete data log-likelihood (McLachlan & Krishnan, 2007).
For efficient computation with more than a few measurement occasions and
with larger numbers of states, a special implementation of the E step can
be used for LM models. This algorithm which is referred to as the forward-
backward or Baum-Welch algorithm (Baum, Petrie, Soules, & Weiss, 1970)
is implemented in software for LM models, such as in Latent GOLD program
(Vermunt & Magidson, 2013) we used for our numerical studies.

Estimating the parameters of the LM model using the above mentioned
procedure is, however, not always straightforward. Firstly, the log-likelihood
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function in equation (5) may contain local maxima to which the optimiza-
tion algorithm may converge (Visser et al., 2002). Inference based on such
a local maximum may result in erroneous conclusions about the parameters
and the fit of the LM model of interest. To prevent local maxima, one should
therefore make sure that the model is re-estimated with multiple start sets.
Secondly, in LM models, initial state, transition, and measurement model
probabilities are mutually dependent. Because of this contingency, misspec-
ification in one part of the model will affect the estimates other parts of the
model; that is, imposing an incorrect constraint on one set of LM parameters
(e.g., the transition parameters) affects the estimates of the other parameters
(Visser et al., 2002). It should be noted that the latter feature is used by
the power computation methods described below, which involve estimating
the misspecified H0 model using (data generated from) the H1 population.
Misspecification in the transition model will be partially absorbed by the
(unrestricted) measurement model, which may have a strong effect on the
power of the test regarding the transition parameters.

THE LIKELIHOOD RATIO TEST

Once the parameter estimates and the corresponding log-likelihood values are
obtained for the null (restricted) and the alternative (unrestricted) model,
hypotheses such as those presented in Table 1 can be tested using the LR
test statistic. The LR test statistic for the comparison of the restricted and
unrestricted model is defined as

LR = −2(l(Φ0)− l(Φ)),

where l(.) is the log-likelihood function as shown in equation (5), and Φ1

and Φ0 are the parameters of the model under the alternative and null hy-
potheses, respectively. It is also possible to obtain the LR statistic by taking
the difference between the goodness-of-fit test statistics of the null and the
alternative model, LR = LR0−LR1, where LR0 and LR1 compare the model
concerned with the saturated model. Under certain regularity conditions, un-
der the null hypothesis, LR follows a (central) chi-square distribution with df
degrees of freedom (Giudici, Ryden, & Vandekerkhove, 2000). The number
of degrees of freedom of the test is determined by subtracting the number
of parameters under the null from the number of parameters under the al-
ternative hypothesis. The general principle of this test is to reject the null
hypothesis if the observed value of the LR exceeds the (1−α) quantile value,
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also called the critical value, of the central chi-square distribution with df
degrees of freedom. Such testing procedure can be classified under what we
referred to above as the standard case.

There are also, however, hypotheses for which the LR statistic does not
necessary follow a chi-square distribution. This happens, for example, with
hypotheses of the type H9

0 : πr|s = 0 and H10
0 : A = diag{πs|s}, that is, when

parameters are fixed on the boundary of the parameter space. The reason for
this is that restricting the parameter(s) on the boundary of the parameter
space breaks the regularity conditions under which the LR asymptotically
follows a chi-square distribution (Bartolucci, 2006). In such non-standard
testing situations, one can perform the test using the empirical distribution
constructed by MC simulation, which is usually referred to as the bootstrap
LR test (Aitkin, Anderson, & Hinde, 1981; Collins, Fidler, Wugalter, & Long,
1993).

POWER COMPUTATION

The power of a test is the probability of rejecting the null hypothesis given
that the alternative hypothesis is true. To compute the power, we should
know or estimate the distribution of the test statistic under both the null and
alternative hypothesis. The distribution under the null hypothesis, which is
indicated with H0 in Fig.1, is required to compute the critical value, Q1−α,
corresponding to the pre-defined type 1 error α. The distribution under the
alternative hypothesis, indicated with H1 in Fig.1, is required to compute
the power, that is, the probability that the test statistic exceeds this cut-off
value given that the alternative hypothesis is true. In Fig.1, this probability
corresponds to the shaded area below the H1 curve to the right of the vertical
dashed line at the critical value. The next sub-sections describe various pro-
cedures for computing this probability under the standard and non-standard
testing cases.
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Q1−α

power
α

H0

H1

Figure 1: Distributions of LR under the null and alternative hypotheses.

The standard case

As already mentioned above, in the standard case, the LR statistic follows
a central chi-square distribution when the null hypothesis holds. When in-
stead the alternative hypothesis holds, which is what we assume in power
computation, the distribution of the LR becomes a non-central chi-square.
One approach to power computation involves computing the non-centrality
parameter λ, which quantifies how much the distribution of the LR under
the alternative hypothesis deviates from its distribution under the null hy-
pothesis.

But, first we describe a general power computation approach which does
not require the computation of the non-centrality parameter. Instead, the
empirical distribution of the LR under the alternative hypothesis is con-
structed using a Monte Carlo (MC) procedure. This procedure, which we
refer to as MC-based power computation, proceeds as follows.
Step 1. A sample of a specified size, n, is repeatedly selected (say M times)
from the population under the alternative hypothesis, and for each of these
samples, the LR value is computed by estimating both the null model and
the alternative model. We denote the LR value obtained with the m sample
by LRm.

11



Step 2. The actual power associated with a sample of size n is computed
as the proportion of the simulated data sets in which the null hypotheses is
rejected given the critical value Q1−α, which can be obtained from the central
chi-square distribution with df degrees of freedom. More formally,

powerMC1
=

∑M
m=1 I(LRm > Q1−α)

M
, (6)

where I(LRm > Q1−α) is an indicator function taking the value 1 when the
LR value of the mth sample exceeds the critical value, and otherwise being
0.

The second, more elegant and more standard, way of power computation
involves obtaining an estimate of the non-centrality parameter and subse-
quently computing the power for a given n using the non-central chi-square
distribution concerned. We discuss two methods to obtain the non-centrality
parameter, which both require analyzing a single constructed data set. The
first method, which we refer to as exemplary data method, uses a data file
which is exactly in agreement with the population model under the alter-
native hypothesis (Self, Mauritsen, & Ohara, 1992). Power computation is
implemented in four steps as follows.
Step 1. An ’exemplary’ data set is created, which contains all possible re-
sponse patterns with weights equal to the model expected proportions under
the alternative hypothesis.
Step 2. Using this data set, the log-likelihood is computed for both the con-
strained null and the alternative model.
Step 3. The non-centrality parameter is approximated as

λ1 = −2(l(Φ0)− l(Φ1)), (7)

where l(Φ0) and l(Φ1) are the log-likelihood values under the null and the
alternative hypothesis, respectively (see also (Williamson, Lin, Lyles, & High-
tower, 2007)), and λ1 represents the noncentrality corresponding to a sample
size of 1. Note that λ1 can also be computed as the difference between the
goodness-of-fit tests for the null and alternative models. Since the latter
equals 0 (the alternative model fits perfectly), λ1 equals the value of the
likelihood-ratio goodness-of-fit statistic obtained when estimating the null
model.
Step 4. The non-centrality parameter obtained in Step 3 is rescaled to the
sample size n of interest. This is achieved using the proportionality between
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the sample size and the non-centrality parameter (Satorra & Saris, 1985;
MacCallum, Browne, & Cai, 2006): λn = n · λ1, where λn denotes the non-
centrality parameter for sample size n. The power can now be computed as
follows:

power = P (LR > Q1−α(df)) = Fχ2(Q1−α, df, λn), (8)

where Fχ2(df, λ) is a distribution function for non-central chi-square with df
degrees of freedom and non-centrality parameter λn, and Q1−α = χ2

(1−α)(df)

is, as above, the (1−α) quantile value of the central chi-square distribution.
Basically, the last step involves finding the probability that the non-central
chi-square variate concerned exceeds the critical value.

The number of response patterns in the exemplary data set, which de-
pends on the number of measurement occasions, the number of response
variables, and the number of response categories, can quickly become very
large. For instance, even in a relative small problem with four time points
(T = 4) and six response variables (P = 6) with two categories, the number
of possible response patterns is already larger than 16 million. This shows
that the exemplary data method may quickly become impractical. We pro-
pose resolving this problem by using a large simulated data set from the
population under the alternative hypothesis instead of an exemplary data
set. We refer to this alternative to the exemplary data method as the ’large
data’ method. The steps that need to be taken for power computation are
the following:
Step 1. Generate a large data set, say of size N = 100000, according to the
model under the alternative hypothesis.
Step 2. Estimate the models under both the null and the alternative hy-
potheses based on the data obtained in Step 1. This yields the log-likelihood
values for both models.
Step 3. Compute the non-centrality parameter as

λ1 =
−2(l(Φ0)− l(Φ1))

N
, (9)

where λ1 is again the noncentrality parameter for a sample size of 1. Note
that now the likelihood-ratio goodness-of-fit test is not equal to 0 under the
alternative model, which means that we have to estimate both models.
Step 4. As in the exemplary data method, get λn = n · λ1 and obtain the
power using equation (8).
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The non-standard case

In the non-standard case, the regularity conditions under which the LR fol-
lows asymptotically a χ2-distribution are not satisfied. This happens, for
instance, if parameters are fixed on the boundary of the parameter space,
as in hypotheses H9

0 and H10
0 . In this non-standard case, the cut-off value

Q1−α is generally not equal to χ2
(1−α)(df). Thus, the critical value of the

LR obtained from the central chi-square cannot be used in the subsequent
power computation under the alternative hypothesis. Neither can we use
the non-central chi-square to approximate the distribution of the LR under
the alternative hypothesis, implying that the theoretical distributions men-
tioned above cannot be used here for power computation. However, with
the advance in computing facility, instead of relying on these theoretical dis-
tributions, one may compute power by applying MC simulations. Two MC
simulations are needed: one simulation is performed to obtain the value of
Q1−α given the null hypothesis, and the other simulation is performed to
compute power given the alternative hypothesis.

More specifically, in order to compute the value of Q1−α, the empirical
distribution of the LR under the null hypothesis should be constructed first.
That is, generate M data sets according to the model under the null hypoth-
esis, and compute the LR statistic for each of these samples. For sufficiently
large M , the distributions of these LR values approximate the population
distribution of the LR statistic under the null hypothesis. Next, for the spec-
ified α-level, this (1−α) quantile value is obtained as the value LR(1−α) that
splits the sorted LR values into the following two sets: the 100(1−α) percent
smaller LR values and the top 100α percent large LR values. That is,

Q1−α = {LR(1−α) : P (LR > LR(1−α)|H0) = α}. (10)

Similarly, the distribution of the LR under the alternative hypothesis is
constructed using M samples, but now generated according to the model un-
der the alternative hypothesis. Using this distribution the power is computed
as the proportion of these LR values that exceeds the Q1−α value obtained
from equation (9). That is,

powerMC01
= P (LR > Q1−α|H1) =

∑M
m=1 I(LRm > Q1−α)

M
, (11)

where I(·) is again an indicator function indicating whether the LR value
(computed based on the H1 sample) exceeds the Q1−α value. Note that
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powerMC01 in equation (11) indicates that MC methods are applied under
both the null and the alternative hypothesis, while powerMC1 in equation (6)
indicated MC simulation is applied under the alternative hypothesis only.

The details of these power computation methods with the illustration
using the Latent GOLD program (Vermunt & Magidson, 2013) syntax are
provided in the appendix section.

Design factors

As in any other standard statistical model, the power of a test also depends
in LM models on the significance level α, the effect size (difference between
the parameter values under the null and alternative hypotheses), and the
sample size. This can be explained using Fig.1. If the value of α becomes
larger, Q1−α shifts to the left, and consequently the region under the curve
H1 to the right of Q1−α gets larger. This implies that the larger α, the larger
the power of a test. Now, for a fixed α-level, if the effect size gets larger,
the value of the non-centrality parameter gets larger, meaning that the curve
indicated by H1 shifts to the right, and consequently the power becomes
larger. The same applies to the sample size. If the sample size increases, the
non-centrality parameter increases, meaning that the overlap between the
distributions H0 and H1 decreases and thus the power increases.

In addition to those standard factors, the power of a test in LM models
is expected to depend on aspects of the measurement part and the transition
part of these models. From research on latent class models (which share the
measurement part but not the transition part with LM models) we know
that power is affected by uncertainty about the latent state occupied at a
particular time point. This uncertainty depends on the number of states, the
class proportions, the number of response variables, and the strength of the
association between the latent states and the response variables (Gudicha
et al., under review). The larger the number of response variables and the
stronger the state-response associations, the better the separation between
states will be. The better the states are separated, the less uncertain we are
about the respondents state membership given his/her responses to the indi-
cator variables, indicating a strong connection between the measurement and
transition parts of the LM model. See also (Tein, Coxe, & Cham, 2013) who
discussed statistical power to detect number of clusters in latent profile anal-
ysis. Additionally, specific to LM models, we expect that uncertainty about
the latent state occupied at a particular time point is influenced by the tran-
sition probabilities. Also, each additional measurement occasion increases
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the precision of the parameter estimates, which implies that the number of
measurement occasions should also affect the power.

NUMERICAL STUDY

The purpose of this numerical study is to 1) illustrate the power computa-
tion methods under the standard and non-standard case, 2) investigate how
the study design factors and the population model characteristics mentioned
above may affect the power, and 3) see which design configurations yield an
acceptable power level (power ≥ 0.8). We focus on three of the hypotheses
shown in Table 1. The first two hypotheses, H4

0 : πr|s = πs|r for some r, s in
the basic LM model, and H8

0 : γr = 0 in the LM model with covariates are
examples of the standard case. The third hypothesis concerns testing for a
zero entry in the transition probability matrix, H9

0 : πr|s = 0 for some s and
r, is an example of the non-standard case.

Design

In this numerical study, we restricted ourselves to LM models for dichotomous
response variables (say with the categories negative and positive). Moreover,
the α value was always assumed to be 0.05.

We varied the sample size (n = 300, 500, or 900), the number of mea-
surement occasions (T = 2 or 4), the number of latent states (C = 2 or
3), the number of response variables (p = 6 or 10), the initial states pro-
portions (uniform or non-uniform), the strength of the association between
latent states and response variables (weak, medium, or strong), and the sta-
bility of the state membership (unstable, moderately stable, and stable). The
non-uniform initial state proportions were set to (0.7, 0.3) for C = 2 and to
(0.6, 0.3, 0.1) for C = 3). The settings for the association between states and
responses were specified using response probabilities equal to 0.7, 0.8, and 0.9
(or .3, .2, and .1), respectively. For example, in weak association condition,
the probability of a positive response was set to 0.7 for all variables in latent
state one, to 0.3 in latent state two, and to 0.7 for the first half of the items
and to 0.3 for the remaining items in state three. The basic settings for the
latent transitions where obtained by setting the main diagonal elements of
the transition matrix to πr|r = 0.7, 0.8, or 0.9, and the other elements to
1−πr|r
C−1 , which corresponds to unstable, moderately stable, and highly stable

state memberships, respectively.
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1) For hypothesis H1
0 ; πr|s = πs|r, we arrived at the respective transition

matrices under the alternative model (i.e., with differences in the off-diagonal
elements) by specifying the transition odds-ratios comparing the transition

from s to r with the transition from r to s, which is defined as
πr|s/πs|s
πs|r/πr|r

, to be

equal to 1.3498, 1.8222 and 3.3201. These odds-ratios, which we hereafter
refer as small, medium, and large effect size, correspond to differences in the
transition probabilities ranging from 0.01 to 0.25.

2) For hypothesis H8
0 ; γr = 0, we added the effect of a dichotomous

covariate on the transitions. The covariate effect was specified by setting its
(effect coded) coefficient in the logistic regression model for the transitions
to 0.25, 0.5, and 1. Or equivalently, by setting the transition odds-ratio to
1.648, 2.7182, and 7.389, which corresponds to a small, medium, and large
effect size, respectively.

3) For hypothesis H9
0 ; π1|2 = 0, we restricted ourselves to the situation

with T = 2, p = 6, π1|1 = 0.7 or 0.9, C = 2, and equal initial state probabil-
ities. This setting gives as a transition matrix of the type[

0.7 0.3
δ 1− δ

]
and

[
0.9 0.1
δ 1− δ

]
,

where δ is the value of πr|s under the alternative hypothesis. The value of δ,
which defines the effect size for the hypothesis that πr|s = 0, was set to 0.05,
0.1, or 0.2. The association between states and response variables was set to
weak, medium, and strong as defined earlier.

Results

Table 2 and 3 present the power for the test of the hypothesis that πr|s =
πs|r. As expected, the power depends on the association between the latent
states and the response variables, the number of measurement occasions, the
sample size, the size of initial states, the number of response variables, the
transition probabilities, and the effect size. More specifically, the stronger
the association between latent states and response variables, the larger the
power. For a given number of measurement occasions, say T = 2, reasonable
power levels are achieved by increasing the sample size (Table 2). Or, for
a given sample size say n = 300, reasonable power levels are achieved by
increasing the number of measurement occasions (Table 3). Comparison of
these two factors shows that the power gain achieved by increasing number
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of measurement occasions from 2 to 4 is larger than the power gain achieved
by increasing the sample size from 300 to 900. Also, increasing the number
of response variables, or sampling from a population with equal initial state
probabilities increases the power with the current design and population
model characteristics.

Another interesting observation is that, keeping the other design factors
constant, the more unstable the state membership ( or the larger the transi-
tion probabilities), the larger the power to demonstrate differences between
transition probabilities. One can also see from Table 3 that for the situa-
tion where the initial state proportions/probabilities are equal, the number
of response variables is equal to 6, and the sample size is equal to 300, a
power of 0.80 or higher is achieved 1) for low transition probabilities, when
the effect size is large and the association between states and response vari-
ables is strong, 2) for moderate transition probabilities, when the effect size
is large and the association between states and response variables is medium
or strong, and 3) for high transition probabilities, when the effect size is
large. For the situation when we have weak associations between states and
response variables, highly stable transition probabilities, and a low or moder-
ate effect size, such a power level is achieved only at the expense of increasing
the sample size, or the number of measurement occasions. For 3-state LM
model, we do not show the results of the power calculation, as they provide
similar information with the results for 2-state LM model shown in Table 2
and 3. The power to demonstrate differences in the transition probabilities
for the 3-state LM model is in general lower than its corresponding power
value for the 2-state LM model.

The power of the LR test against the null hypothesis that the covariate
has no effect on the transition probabilities is shown in Table 4 and 5. With
respect to the design factors, the general trend found is similar to the results
from Table 2, 3 and 8. That is, power increases with sample size and effect
size. Also, for a fixed sample size and effect size, one can achieve a desired
level of power by improving the measurement part of the LM model, for
example, by increasing the associations between latent states and response
variables from weak to strong, or by increasing the number of response vari-
ables. Increasing the number of measurement occasions could also greatly
help in obtaining a desired power level. One can also see from these tables
that power for the effect of the covariate on the transition probabilities be-
comes larger when the state membership is more unstable, say πr|r = 0.7,
than when we have highly stable states, say πr|r = 0.9.
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Table 2: Effect of sample size n, transition probabilities, and conditional response probabilities on the power
for the test that πr|s = πs|r in the two state LM model.

P = 6, T = 2, and equal initial state proportions
πr|r = 0.9 πr|r = 0.8 πr|r = 0.7

effect state-response state-response state-response
size association association association

weak medium strong weak medium strong weak medium strong

small .075 .094 .117 .096 .142 .176 .113 .199 .224
n = 300 medium .166 .279 .306 .221 .444 .532 .280 .581 .622

large .397 .714 .873 .682 .954 .981 .795 .984 .996

small .093 .125 .164 .128 .206 .262 .156 .299 .341
n = 500 medium .162 .425 .466 .335 .651 .750 .427 .798 .835

large .592 .903 .980 .881 .997 .999 .949 1.00 1.00

small .127 .187 .256 .192 .331 .426 .243 .485 .547
n = 900 medium .254 .661 .711 .539 .883 .942 .663 .976 .976

large .837 .992 1.00 .988 1.00 1.00 .998 1.00 1.00

Power values computed using the large data set method (see also equation 8).
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Table 3: Effect of the number of measurement occasions T , the number of response variables P , and the
initial state proportions on the power for the test that πr|s = πs|r in the two state LM model.

πr|r = 0.9 πr|r = 0.8 πr|r = 0.7
effect state-response state-response state-response
size association association association

weak medium strong weak medium strong weak medium strong

Equal initial state proportions, and n = 300
small .075 .094 .117 .096 .142 .176 .113 .199 .224

T = 2, P = 6 medium .166 .279 .306 .221 .444 .532 .280 .581 .622
large .397 .714 .873 .682 .954 .981 .795 .984 .996

small .075 .108 .127 .131 .151 .181 .153 .203 .238
T = 2, P = 10 medium .195 .285 .335 .388 .505 .544 .455 .622 .645

large .559 .836 .865 .874 .972 .988 .945 .995 .997

small .193 .232 .267 .264 .403 .447 .247 .486 .556
T = 4, P = 6 medium .520 .686 .779 .757 .927 .944 .764 .970 .984

large .971 .999 1.00 .999 1.00 1.00 .999 1.00 1.00

Unequal initial state proportions, and n = 300
small .058 .095 .113 .091 .136 .149 .087 .148 .163

T = 2, P = 2 medium .108 .203 .302 .180 .358 .430 .219 .450 .586
large .269 .606 .787 .575 .898 .952 .683 .954 .984

Power values computed using the large data set method (see also equation 8).
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Table 4: Effect of sample size n, transition probabilities, and conditional response probabilities on the power
for testing the covariate effect on transition probabilities.

P = 6, T = 2, and equal initial state proportions
πr|r = 0.9 πr|r = 0.8 πr|r = 0.7

effect state-response state-response state-response
size association association association

weak medium strong weak medium strong weak medium strong

small .085 .127 .187 .113 .239 .316 .146 .307 .395
n = 300 medium .180 .428 .586 .352 .719 .874 .482 .860 .949

large .587 .961 .996 .889 .999 1.00 .966 1.00 1.00

small .109 .185 .289 .159 .376 .496 .217 .480 .606
n = 500 medium .276 .649 .817 .547 .916 .983 .712 .979 .997

large .818 .998 1.00 .987 1.00 1.00 .999 1.00 1.00

small .162 .304 .485 .257 .616 .762 .363 .746 .863
n = 900 medium .465 .894 .975 .813 .995 1.00 .932 1.00 1.00

large .975 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Power values computed using the large data set method (see also equation 8).
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Table 5: Effect of the number of measurement occasions T , the number of response variables P , and the
initial state proportions on the power for testing covariate effects.

πr|r = 0.9 πr|r = 0.8 πr|r = 0.7
effect state-response state-response state-response
size association association association

weak medium strong weak medium strong weak medium strong

Equal initial state proportions, and n = 300
small .085 .127 .187 .113 .239 .316 .146 .307 .395

T = 2, P = 6 medium .180 .428 .586 .352 .719 .874 .482 .860 .949
large .587 .961 .996 .889 .999 1.00 .966 1.00 1.00

small .224 .421 .523 .328 .584 .751 .396 .748 .860
T = 4, P = 6 medium .623 .942 .983 .893 .997 1.00 .951 1.00 1.00

large .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

small .139 .178 .193 .180 .277 .327 .223 .388 .418
T = 2, P = 10 medium .287 .538 .631 .562 .850 .885 .685 .928 .949

large .853 .992 .997 .990 1.00 1.00 .999 1.00 1.00

Unequal initial state proportions, and n = 300
small .078 .135 .187 .124 .198 .311 .163 .286 .403

T = 2, P = 6 medium .171 .446 .598 .380 .719 .865 .539 .870 .947
large .605 .968 .998 .912 1.00 1.00 .983 1.00 1.00

Power values computed using the large data set method (see also equation 8).

22



Table 6 shows the power for the LR test against the null hypothesis
that the probability of switching from one state at time point (t − 1) to
another state at time point t equals zero. As compared with these other two
hypotheses, the roles of transition probability on power is small. Whereas
the role of state-response association on the power is high. For example, in
a sample of 100 observations, if the state-response association is weak, the
power to detect that a true proportion of .05 is different from the null of
0 is lower than 20 %. If this state-response association is instead strong,
this power becomes over 90 %. When the state-response associations are
strong, that is the measurement model is strong, the state separation becomes
high. In such a condition, the possibility of observing the expected pattern
from state 1 while in state 2 becomes extremely small. Therefore, when the
true underlying model generates some transitions that are impossible under
the restricted model, the likelihood of this restricted model will decrease
dramatically, because each impossible transition, say, a transition from state
1 to state 2, needs to be accommodated by assigning the observed pattern
from state 1 to state 2, or vice versa. The decrease in the likelihood of the
restricted model will be accompanied by biased parameter estimates: the
estimates of the conditional response probabilities in the two states will be
biased to be closer to each other, to increase the likelihood of observing a
state 1 pattern given state 2 or a typical state 2 pattern given state 1.

The results presented in Table 2 to 5 concern the standard case, and were
thus obtained using the large data method which assumes that the distribu-
tions under H0 and H1 are known. That is, we assume a central chi-square
under the null and non-central chi-square under the alternative hypothesis,
and moreover approximate the value of the non-centrality parameter based
on a large data set. To investigate the quality of the latter approximation
as well as the asymptotic approximation of the chi-square itself, we also per-
formed power computation by the MC-based M01 method for some of the
conditions of Table 2 to 5. The results presented in Table 7 show that both
the large data set and the chi-square approximations are very good.
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Table 6: Power for the hypothesis that π2|1 = 0 in two state LM model

n = 100 n = 200 n = 300
state-response state-response state-response
association association association

π2|1 weak medium strong weak medium strong weak medium strong

π2|2 = 0.7

.05 .182 .640 .906 .263 .810 .987 .344 .917 .999

.1 .381 .877 .991 .544 .978 1.00 .710 .997 1.00

.2 .533 .968 1.00 .795 .998 1.00 .999 1.00 1.00

π2|2 = 0.9

.05 .181 .597 .894 .262 .806 .987 .330 .910 .999

.1 .362 .872 .992 .554 .979 1.00 .685 .996 1.00

.2 .535 .957 .999 .758 .999 1.000 .887 1.00 1.00

Power values computed using M01 method (see also equation (11)).
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Table 7: Asymptotic approximation of the LR when estimating the non-centrality parameter with large
data set: Testing the hypothesis that πr|s = πs|r in two state LM model.

n = 500, P = 6, T = 2, and equal initial state proportions
πr|r = 0.9 πr|r = 0.8 πr|r = 0.7

effect theoretical state-response state-response state-response
size versus association association association

empirical weak medium strong weak medium strong weak medium strong

small theoretical .093 .125 .164 .128 .206 .262 .156 .299 .341
empirical .077 .134 .179 .126 .217 .256 .151 .293 .341

medium theoretical .162 .425 .466 .335 .651 .750 .427 .798 .835
empirical .175 .386 .474 .368 .658 .750 .438 .796 .846

large theoretical .592 .903 .980 .881 .997 .999 .949 1.00 1.00
empirical .5446 .907 .975 .875 .997 .999 .939 1.00 1.00

The empirical powers, computed using the M01 method of power computation, are presented below each
entry of the theoretical LR powers. The empirical powers are computed as follows: First, the CV value is
obtained by applying the MC under the null hypothesis. Next, based on this CV value, power is computed
under the alternative hypothesis using the MC method. Thus, neither the CV nor the power computation
is relied on theoretical chi-square. The theoretical powers are computed by assuming a central chi-square
under the null and non-central chi-square under the alternative hypotheses, for which the non-centrality
parameter is approximated by using a large data set.
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DISCUSSION AND CONCLUSION

This paper addressed power computation methods for testing hypotheses
about transition parameters of LM models, which are the transition proba-
bilities themselves in the basic LM model and the logistic regression coeffi-
cients in the LM model with covariate(s). We showed how the hypotheses of
main interest can be specified by imposing equality constraints across param-
eters or fixing parameter(s) to some user defined value(s). We distinguished
power computation for the standard case and power computation for the
non-standard case, where the latter arises when probabilities are fixed to
zero.

For the standard case, in which the likelihood-ratio statistic follows an
asymptotic chi-square distribution, two power computation approach were
discussed. The first consists of approximating the distribution under the
alternative hypothesis for a given sample size n using MC simulation (referred
to as MC1). The second approach involves estimating the non-centrality
parameter using either an exemplary data set or large simulated data set
and subsequently obtaining the power for any sample size n from the non-
central chi-square distribution. The advantage of the second approach is
that it is computationally cheaper. However, when we have doubts that
the distribution of the LR test statistic under the alternative is non-central
chi-square, the MC1 simulation approach is the preferred option. The MC1

simulation approach can also be applied when the distribution under the
null is known but the distribution under the alternative is unknown. We will
come back to this issue when discussing topics for future research.

The non-standard case occurs when the likelihood-ratio does not follow
a standard chi-square distribution. The most obvious example for this is
when a parameter is fixed to the boundary of the parameter space, which
equals zero or one for probabilities. In such situations, power computation
by MC simulation is applicable (referred to as MC01). We use the MC01

method to compute both the critical value under the null hypothesis and the
power under the alternative hypothesis given this critical value. Note that
this procedure is similar to the MC1 simulation approach discussed under
the standard case, with the only difference that the theoretical distribution
under the null hypothesis is replaced by its empirical counterpart.

In our numerical study, we saw that the power to detect large effects can
be small even with a not very small sample of say 500 observations. Based
on the results of the numerical study, we therefore strongly recommend re-
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searchers who apply LR tests in LM models to perform a power analysis
prior to the data collection. Our findings point at several important issues
that should be taken into account. Firstly, in addition to the usual design
factors (i.e., effect size, sample size, and significance level α), a power anal-
ysis for LM models should also involve various other design factors, namely,
the number of time points, the number of response variables, the strength
of association between latent states and response variables, the number of
states, the initial state probabilities, and the transition probabilities. Sec-
ondly, for a given effect size, a desired level of power can be achieved by
increasing the number of measurement occasions, by increasing the number
of response variables, and/or by using response variables that have strong
associations with the latent states. Moreover, situations in which the tran-
sition probabilities are small need special care, since power may be low in
such situations. Thirdly, when the association between states and response
variables is weak and/or the effect size is small, a reasonable power level can
be achieved at the expense of gathering more data, that is, by increasing the
sample size and/or the number of measurement occasions. In the scenarios
we studied, increasing the number of measurement occasions was more ef-
ficient than increasing the sample size. This is probably connected to the
fact that we looked at hypotheses for the transition probabilities; that is,
with more measurement occasions one has more information on the transi-
tion probabilities. When testing hypotheses on the initial state and/or the
response probabilities, increasing the sample size is probably more effective.

In the MC-based power computation, the accuracy of the estimated power
depends strongly on the number of replications used. This is especially the
case in the MC01 method used in the non-standard case, in which not only
the power but also the critical value under H0 was estimated by MC simula-
tion. In our study, we used 5000 MC replications, which seemed to be large
enough for the hypotheses we looked. However, the required number of MC
replications may depend on the type of hypothesis and the model complexity,
hence, further research might explore the required number of MC replications
for LR tests in LM models.

While for the non-standard case we proposed approximating the distribu-
tion of the LR statistic under H0 by simulation, its asymptotic distribution
has been shown to be chi-bar square (Bartolucci, 2006). This means one may
also obtain the critical value under H0 from the chi-bar square distribution,
which for multiple parameter hypotheses also requires performing some kind
of MC simulation. But power computation using an asymptotic approach,
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requires knowing also the distribution under the alternative. This is however
a problem that has not yet been resolved. Another possible area for future
research is investigating whether this distribution is, for instance, a certain
type of non-central chi-bar square distribution (Shapiro, 1988).

Other possible areas for further research concern the application of the
proposed power computation methods with other types of hypotheses rele-
vant for LM modeling. It seems that both the standard and non-standard
case methods can be directly transferred to hypotheses about other param-
eters of the LM model, namely, the initial probabilities and the conditional
response probabilities. The MC method proposed for the non-standard case
may also be applicable in hypotheses tests concerning the number of latent
states, that is, when comparing models with C and C + 1 states. For the
power computation, we estimate the (incorrect) model under H0 for data sets
generated under H1. That is, the measurement parameters are not fixed, but
estimated under this incorrect model. These parameters will be biased: the
measurement error will be estimated to be larger than it actually is. But for
the power computation this is not important. What matters is whether the
”allowed” bias in the measurement parameter can compensate (in term of
log-likelihood value) for the misspecification of the transition model. If this is
not the case, the power will be large. Future research investigating whether
the allowed bias compensate for the misspecification of the transition model
would be interesting, as the focus of the current paper is more of on how to
compute the power for hypothesis.
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APPENDIX A: Latent GOLD syntax for power computation

This appendix illustrates the application of the proposed power computation
methods using the Latent GOLD program. As an example, we use a 2-
state LM model with six binary response variables (y1 through y6). The H1

population model contains unequal transition probabilities, and we test the
H0 model with equal transition probabilities against the H1 model.

In order to perform a power computation, one should first define a data
file indicating the time structure and the variables in the model. With T = 4
and p = 6, this file could be of the form

id time y1 y2 y3 y4 y5 y6 n100000 n300

1 1 0 0 0 0 0 0 100000 300

1 2 0 0 0 0 0 0 100000 300

1 3 0 0 0 0 0 0 100000 300

1 4 0 0 0 0 0 0 100000 300

This data file contains 4 records (one for each measurement occasion) which
are connected by an identifier variable, arbitrary values for the response
variables, and variables indicating sample sizes to be used later on.
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A Latent GOLD syntax model consists of three sections:“options”, “vari-
ables”, and “equations”. The relevant LM model is defined as follows

// basic model

options

output parameters=first standarderrors profile;

variables

caseid id;

dependent y1 nominal 2, y2 nominal 2, y3 nominal 2,

y4 nominal 2,y5 nominal 2,y6 nominal 2;

latent State nominal dynamic 2;

equations

State[=0] <- 1;

State2 <- (beta~tra) 1 | State[-1];

y1-y6 <- 1 | State;

The “output” option indicates that we wish to use dummy coding for the logit
parameters with the first category as the reference category. Subsequently,
we define the variables which are part of the model. Note that the latent
variable “State” is specified to be dynamic, which yields a latent variable
which changes its value across measurement occasions.

The three equations represent the logit equations for the initial state, the
transitions, and the measurement part of the model, respectively. Note that
“1” indicate an intercept, and “|” that the intercept depends on the variable
concerned. A special type of coding (called transition coding and indicated
with ”˜ tra” ) is used for the logit parameters of the transition model and,
moreover, a label (beta) is specified for these parameters. This label will be
used below to impose restrictions.

a) Standard case

Option 1. Implementation of the Monte Carlo based power computation
method (MC1) involves defining the H0 and H1 model in a single input file.
Denoting the parts which remain the same as in basic model defined above
by “...”, the H1 model may equal:

// H1 model for MC-based method

...

equations
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...

{0.000000000

-0.54729786 -1.14729786

1.386294361 -1.386294361

1.386294361 -1.386294361

1.386294361 -1.386294361

1.386294361 -1.386294361

1.386294361 -1.386294361

1.386294361 -1.386294361}

The numbers shown inside the curly bracket represent the values for the
logit parameters in the H1 model. The first row contains the initial state
parameter(s), the second row the transition parameters, and the remaining
rows the response parameters.

The H0 model in which the transitions are restricted to be equal is defined
as follows:

// H0 model for MC-based method

options

...

montecarlo replicates=1000 power=’H1’ N=300 alpha=0.05;

variables

...

equations

...

beta[1,1] = beta[2,1];

As can be seen, the equality restriction on the transition logits is defined
at the end of the equations section. What is important to note is that the
H0 model should contain the “montecarlo” option indicating the number of
Monte Carlo replications, the “power” command with the name of the H1

model, the sample size “N”, and the level of significance “alpha”. Running
the H0 model will yield the power for LR test comparing the two models.

Option 2. When using the large data set method, one should first simulate
a large data set from the population defined by H1 and subsequently analyze
this data set using both the H0 and H1 model. Simulating the large data set
is done as follows:
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// H1 model for simulating a large data file

options

...

outfile ’sim.dat’ simulation;

variables

...

caseweight n100000;

equations

...

{...}

Compared to the basic specification, we use the “outfile” option to indicate
that a data file should be simulated, use the “caseweight” to indicate the size
of the large data set (here 100000), and specify the parameter values of the
population model.

To obtained the power we analyze the large data set with an input file
containing both the H0 and H1 model. The H1 model equals:

// H1 model for large data based power computation method

options

...

output LLdiff=’H0’ LLdiffPower=300;

...

That is, we indicate that a log-likelihood difference test should be performed
(“LLdiff”) and that the power of this test should be computed for the spec-
ified sample size (“LdiffPower”). We also define the H0 model itself, which
again the basic LM model with the constraint “beta[1,1] = beta[2,1]”.

Option 3. Power computation using the exemplary data method is similar
to the large data method. First an exemplary data file which is exactly in
agreement with the H1 model is created, and subsequently this data file is
analyzed with both the null and the alternative model. That is, first create
an exemplary data file as

// H1 model for creating the exemplary data file

options

...

output WriteExemplaryData=’exemplary.dat’;
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variables

...

equations

...

{...}

Next compute power using the crated exemplary data file, by specifying
the H0 and H1 model in the same way as the power computation using
the simulated large data file method. The only difference, when compared
with the simulated large data file method discussed above, is that the case
weight of the exemplary data file has to be specified in both the H0 and
H1 model. This requires adding the line “caseweight frequency;” to the
“variables” section.

b) Non-standard case

We will illustrate MC-based power computation for the non-standard
case using an example in which one of the transition probabilities is fixed to
0, implying that the transition logit concerned is fixed to a large negative
value (say -100). Power computation in the non-standard case proceeds in
two steps. First, we obtain the critical values under H0 by simulation and
subsequently we obtain the power given this critical value.

To obtain the critical value, we define the H0 and H1 model in the same
input file. In the H1 model, we use the “MCstudy” option and specify the
number of Monte Carlo replications, the H0 model, the sample size, and level
of significance “alpha”, that is,

// H1 model for obtaining CV by simulation

options

....

montecarlo replicates=5000 MCstudy=’H0’ N=300 alpha=0.05;

...

The H0 model contains the population values for the free parameters as well
as the constraint. That is,

// H0 model for obtaining CV by simulation

...

equations
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...

beta[1,1] = -100;

{...}

Running the H1 model gives us the critical value (CV).
In the final step, which is identical to the MC-based power computation

described above, except that instead of defining the significance level, we
specify the CV value that we obtained by running the H1 model; that is,
define the H0 and H1 model in a single input file as

// H0 model for obtaining power by simulation

options

...

montecarlo replicates=5000 power=’H1’ N=300 CV=2.2344;

variables

...

equations

...

b[1,1]=-100;

The H1 model is again equal to the basic model with the population values
for the parameters. Running the H0 model will give us the power for the
specified sample size N and the estimated critical value CV, which we set
here to N = 300 and CV = 2.2344.

36


