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The latent Markov model (LMM) can either be seen as an extension of the
latent class model for the analysis of longitudinal data or as an extension
of the discrete-time Markov chain model for dealing with measurement
error in the observed variable of interest. It was introduced in 1955 by Wig-
gins and also referred to as latent transition or hidden Markov model. The
LMM used to separate true systematic change from spurious change resulting
from measurement error and other types of randomness in the behavior of
individuals.

Suppose a single categorical variable of interest is measured at T occa-
sions, and that Yt denote the response at occasion t, 1 ≤ t ≤ T . This could,
for example, be a respondent’s party preference measured at 6-month inter-
vals. Let D denote the number of levels of each Yt, and yt a particular level,
1 ≤ yt ≤ D. Let Xt denote an occasion-specific latent variable, C number of
categories of Xt, and xt a particular LC class at occasion t, 1 ≤ xt ≤ C. The
corresponding LMM has the form

P (Y = y) =
∑
x

P (X1 = x1)
T∏

t=2

P (Xt = xt|Xt−1 = xt−1)

T∏
t=1

P (Yt = yt|Xt = xt).

The two basic assumptions of this model are that the transition structure
for the latent variables has the form of a first-order Markov chain and that
each occasion-specific observed variable depends only on the corresponding
latent variable. For identification and simplicity of the results, it is typically
assumed that the error component is time-homogeneous:

P (Yt = yt|Xt = xt) = P (Yt−1 = yt|Xt−1 = xt),

for 2 ≤ t ≤ T . If no further constraints are imposed, one needs at least 3
time points to identify the LMM. Typical constraints on the latent transition
probabilities are time-homogeneity and zero restrictions.

The enormous effect of measurement error in the study of change can be
illustrated with a hypothetical example with T = 3 and C = D = 2. To
illustrate this, suppose P (X1 = 1) = .80, P (Xt = 2|Xt−1 = 1) = P (Xt =

1



2|Xt−1 = 1) = .10, and P (Yt = 1|Xt = 1) = P (Yt = 2|Xt = 2) = .20. If we
estimate a stationary manifest first-order Markov model for the hypothetical
table, we find .68 in state one at time point one, and transition probabilities
of .29 and .48 out of the two states. These are typical biases encountered
when not taking measurement error into account: the size of the smaller
group is overestimated, the amount of change is overestimated, and there
seems to more change in the small than in the large group.

It is straightforward to extend the above single-indicator LMM to multi-
ple indicators. Another natural extension is the introduction of covariates or
grouping variables explaining individual differences in the initial state and the
transition probabilities. The independent classification error (ICE) assump-
tion can be relaxed by including direct effects between indicators at different
occasions. Furthermore, mixed variants of the LMM have been proposed,
such as models with mover-stayer structures. In the social sciences, LMM
are conceived as tools for categorical data analysis. However, as in standard
latent class analysis, these models can be extended easily to other scale
types.

The PANMARK program can used to estimated the more standard LMMs.
The LEM program can also deal with more extended models, such as models
containing covariates and direct effects between indicators.
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