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The basic idea underlying latent class (LC) analysis is a very simple one:
some of the parameters of a postulated statistical model differ across un-
observed subgroups. These subgroups form the categories of a categorical
latent variable (see entry LATENT VARIABLE). This basic idea has several
seemingly unrelated applications, the most important of which are cluster-
ing, scaling, density estimation, and random-effects modeling. Outside social
sciences, LC models are often referred to as finite mixture models.

LC analysis was introduced in 1950 by Lazarsfeld, who used the tech-
nique as a tool for building typologies (or clustering) based on dichotomous
observed variables. More than 20 years later, Goodman (1974) made the
model applicable in practice by developing an algorithm for obtaining maxi-
mum likelihood estimates of the model parameters. He also proposed exten-
sions for polytomous manifest variables and multiple latent variables, and
did important work on the issue of model identification. During the same
period, Haberman (1979) showed the connection between LC models and
log-linear models for frequency tables with missing (unknown) cell counts.
Many important extensions of the classical LC model have been proposed
since then, such as models containing (continuous) covariates, local depen-
dencies, ordinal variables, several latent variables, and repeated measures. A
general framework for categorical data analysis with discrete latent variables
was proposed by Hagenaars (1990) and extended by Vermunt (1997).

While in the social sciences LC and finite mixture models are conceived
primarily as tools for categorical data analysis, they can be useful in several
other areas as well. One of these is density estimation, in which one makes use
of the fact that a complicated density can be approximated as a finite mixture
of simpler densities. LC analysis can also be used as a probabilistic cluster
analysis tool for continuous observed variables, an approach that offers many
advantages over traditional cluster techniques such as K-means clustering
(see LATENT PROFILE MODEL). Another application area is dealing with
unobserved heterogeneity, for example, in regression analysis with dependent
observations (see NON-PARAMETRIC RANDOM-EFFECTS MODEL).



The classical LC model for categorical indicators

Let X represent the latent variable and Y, one of the L observed or manifest
variables, where 1 < ¢ < L. Moreover, let C' be the number of latent classes
and D, the number of levels of Y,. A particular LC is enumerated by the
index x, x = 1,2,...,C, and a particular value of Y, by vy, v = 1,2, ..., D,.
The vector notation Y and y is used to refer to a complete response pattern.

In order to make things more concrete, consider the following small data
set obtained from the 1987 General Social Survey:

=
S

Y3 Frequency P(X =1Y=y) P(X=2Y=Yy)

1 1 1 696 998 .002
1 1 2 68 929 071
1 2 1 275 .876 124
1 2 2 130 168 832
2 1 1 34 848 152
2 1 2 19 138 .862
2 2 1 125 .080 920
2 2 2 366 .002 998

The three dichotomous indicators Y;, Y5, and Y3 are the responses to the
statements “allow anti-religionists to speak” (1 = allowed, 2 = not allowed),
“allow anti-religionists to teach” (1 = allowed, 2 = not allowed), “remove
anti-religious books from the library” (1 = do not remove, 2 = remove).
By means of LC analysis it is possible to identify subgroups with different
degrees of tolerance towards anti-religionists.

The basic idea underlying any type of LC model is that the probability
of obtaining response pattern y, P(Y =y), is a weighted average of the C'
class-specific probabilities P(Y = y|X = z); that is,

C
P(Y =y)=) P(X=2)P(Y =y|X =2). (1)
r=1
Here, P(X = x) denotes the proportion of persons belonging to LC .
In the classical LC model, this basic idea is combined with the assumption
of LOCAL INDEPENDENCE. The L manifest variables are assumed to be



mutually independent within each LC, which can be formulated as follows:

P(Y = y|X =) = [[ P(Y; = el X = o). (2)
=1

After estimating the conditional response probabilities P(Y, = y¢|X = z),
comparing these probabilities between classes shows how the classes differ
from each other, which can be used to name the classes. Combining the two
basic equations (1) and (2) yields the following model for P(Y =1y):

PY=y)= Z:P(X :x)ﬁP(Yg =yl X =z).

A two-class model estimated with the small example data set yielded the
following results:

X =1 (Tolerant) X = 2 (Intolerant)

P(X =2) 62 38
P(Y; = 11X =) 96 23
P(Y, = 1]X = z) 74 04
P(Ys =1]X = z) 92 24

The two classes contain 62 and 38 percent of the individuals, respectively.
The first class can be named “Tolerant” because people belonging to that
class have much higher probabilities of selecting the tolerant responses on
the indicators than people belonging to the second “Intolerant” class.

Similarly to cluster analysis, one of the purposes of LC analysis might be
to assign individuals to latent classes. The probability of belonging to LC =
— often referred to as posterior membership probability — can be obtained by
the Bayes rule,

P(X =2)P(Y =y|X =2x)

P(X = a]Y =y) = P =) . 3)

The most common classification rule is modal assignment, which amounts to
assigning each individual to the LC with the highest P(X = z|Y =y). The
class-membership probabilities reported in the first table show that people
with at least two tolerant responses are classified into the “Tolerant” class.
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Log-linear formulation of the LC model

Haberman (1979) showed that the LC model can also be specified as a LOG-
LINEAR MODEL for a table with missing cell entries or, more precisely, as a
model for the expanded table including the latent variable X as an additional
dimension. The relevant log-linear model for P(X = z,Y = y) has the
following form:

L L
mP(X =2,Y =y) =ﬁ+ﬁf+;ﬁj;+;ﬁjfﬁ
=1 =1

It contains a main effect, the one-variable terms for the latent variable and the
indicators, and the two-variable terms involving X and each of the indicators.
Note that the terms involving two or more manifest variables are omitted
because of the local independence assumption.

The connection between the log-linear parameters and the conditional
response probabilities is as follows:

exp(By + B,))
SP exp(BY + Bart)

This shows that the log-linear formulation amounts to specifying a logit
model for each of the conditional response probabilities.

The type of LC formulation that is used becomes important if one wishes
to impose restrictions. Although constraints on probabilities can sometimes
be transformed into constraints on log-linear parameters and vice versa, there
are many situations in which this is not possible.

Maximum likelihood estimation

Let I denote the total number of cells entries (or possible answer patterns) in
the L-way frequency table, so that I = [Jf_, Dy, and let i denote a particular
cell entry, n; the observed frequency in cell i, and P(Y = y;) the probability
of having the response pattern of cell i.

The parameters of LC models are typically estimated by means of maxi-
mum likelihood (ML). The kernel of the log-likelihood function that is max-
imized equals

I
InL = ZnilnP(Y =y

=1



Notice that only non-zero observed cell entries contribute to the log-likelihood
function, a feature that is exploited by several more efficient LC software
packages that have been developed within the past few years.

One of the problems in the estimation of LC models is that model pa-
rameters may be non-identified, even if the number of degrees of freedom is
larger or equal to zero. Non-identification means that different sets of param-
eter values yield the same maximum of the log-likelihood function or, worded
differently, that there is no unique set of parameter estimates. The formal
identification check is via the information matrix which should be positive
definite. Another option is to estimate the model of interest with different
sets of starting values. Except for local solutions (see below), an identified
model gives the same final estimates for each set of the starting values.

Although there are no general rules with respect to the identification of
LC models, it is possible to provide certain minimal requirements and point
at possible pitfalls. For an unrestricted LC analysis, one needs at least three
indicators, but if these are dichotomous, no more than two latent classes can
be identified. One has to watch out with four dichotomous variables, in which
case the unrestricted three-class model is not identified, even though it has
a positive number of degrees of freedom. With five dichotomous indicators,
however, even a five-class model is identified. Usually, it is possible to achieve
identification by constraining certain model parameters: for example, the
restrictions P(Y; = 1|X = 1) = P(Y; = 2|X = 2) can be used to identify a
two-class model with two dichotomous indicators.

A second problem associated with the estimation of LC models is the
presence of local maxima. The log-likelihood function of a LC model is not
always concave, which means that hill-climbing algorithms may converge to a
different maximum depending on the starting values. Usually, we are looking
for the global maximum. The best way to proceed is, therefore, to estimate
the model with different sets of random starting values. Typically, several
sets converge to the same highest log-likelihood value, which can then be
assumed to be the ML solution. Some software packages have automated the
use of several sets of random starting values in order to reduce the probability
of getting a local solution.

Another problem in LC modeling is the occurrence of boundary solutions,
which are probabilities equal to zero (or one) or log-linear parameters equal
to minus (or plus) infinity. These may cause numerical problems in the
estimation algorithms, occurrence of local solutions, and complications in
the computation of standard errors and number of degrees of freedom of



the goodness-of-fit tests. Boundary solutions can be prevented by imposing
constraints or by taking into account other kinds of prior information on the
model parameters.

The most popular methods for solving the ML estimation problem are
the Expectation-Maximization (EM) and Newton-Raphson (NR) algorithms.
EM is a very stable iterative method for ML estimation with incomplete
data. NR is a faster procedure that, however, needs good starting values to
converge. The latter method makes use the matrix of second-order derivatives
of the log-likelihood function, which is also needed for obtaining standard
errors of the model parameters.

Model selection issues

The goodness-of-fit of an estimated LC model is usually tested by the Pearson
or the likelihood-ratio chi-squared statistic (see CATEGORICAL DATA ANAL-
vsIS). The latter is defined as

n;

1
L*=2Y n;ln ,
; N-P(Y =y)

where N denotes the total sample size. As in log-linear analysis, the number
of degrees of freedom (df) equals the number of cells in the frequency table
minus one, [}, D; — 1, minus the number of independent parameters. In an
unrestricted LC model,

L
df =[] D.—-C- [1+Z(D5—1)] .
(=1 =1

Although it is no problem to estimate LC models with 10, 20, or 50
indicators, in such cases the frequency table may become very sparse and,
as a result, asymptotic p values can longer be trusted. An elegant, but
somewhat time-consuming, solution to this problem is to estimate the p
values by parametric bootstrapping. Another option is to assess model fit in
lower-order marginal tables; for example, in the two-way marginal tables.

It is not valid to compare models with C' and C+1 classes by subtract-
ing their L? and df values because this conditional test does not have an
asymptotic chi-squared distribution. This means that alternative methods
are required for comparing models with different numbers of classes. One
popular method is the use of information criteria such as BIC and AIC.
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Another more descriptive method is a measure for the proportion of total as-
sociation accounted for by a C-class model, [L?(1) — L?(C)]/L?(1), where the
L? value of the one-class (independence) model, L?(1), is used as a measure
of total association in the L-way frequency table.

Usually we are not only interested in goodness-of-fit, but also in the per-
formance of the modal classification rule [see equation (3)]. The estimated
proportion of classification errors under modal classification equals

Ezgxﬁg—mwumxzﬂyzymy

This number can be compared to the proportion of classification errors based
on the unconditional probabilities P(X = x), yielding a reduction of errors
measure A:

E
max [P(X = z)]

The closer this nominal R2-type measure is to one, the better the classifica-
tion performance of a model.

A=1-

Extensions of the LC model for categorical indicators

Several extensions have been proposed of the basic LC model. One of the
most important extensions is the inclusion of covariates or grouping variables
which describe (predict) the latent variable X. This is achieved by specifying
a multinomial logit model for the probability of belonging to LC x; that is,
exp(y + Thor 7 z)

P(X =z|Z=2)= e %7 ,

S exp(yy + X )
where z;, denotes a value of covariate k.

Another important extension is related to the use of information on the
ordering of categories. Within the log-linear LC framework, ordinal con-
straints can be imposed via ASSOCIATION MODEL structures for the two-
variable terms ﬁj{é’f. For example, if Y, is an ordinal indicator, we can
restrict ﬁ;fz’};’f = XYt .y, Similar constraints can be used for the latent
variable (Heinen, 1996).

In the case that a C-class model does not fit the data, the local inde-
pendence assumption fails to hold for one or more pairs of indicators. The
common model fitting strategy in LC analysis is to increase the number of

7



latent classes till the local independence assumption holds. Two extensions
have been developed that make it possible to follow other strategies. Rather
than increasing the number of latent classes, one alternative approach is to
relax the local independence assumption by including direct effects between
certain indicators — a straightforward extension to the log-linear LC model.
Another alternative strategy involves increasing the number of latent vari-
ables instead of the number of latent classes. This so-called LC factor analysis
approach (Magidson and Vermunt, 2001) is especially useful if the indicators
measure several dimensions.

Other important extensions involve the analysis of longitudinal data (see
LATENT MARKOV MODEL) and partially observed indicators. The most gen-
eral model that contains all models discussed thus far as special cases is the
structural equation model for categorical data proposed by Hagenaars (1990)
and Vermunt (1997).

Other types of LC models

Thus far, we have focused on LC models for categorical indicators. However,
the basic idea of LC analysis, that parameters of a statistical model differ
across unobserved subgroups, can also be applied with variables of other
scales types. In particular, there are three important types of applications
of LLC or finite mixture models that fall outside the categorical data analysis
framework: clustering with continuous variables, density estimation, and
random-effects modeling.

Over the past ten years, there has been a renewed interest in LC analysis
as a tool for cluster analysis with continuous indicators. The LLC model can be
seen as a probabilistic or model-based variant of traditional non-hierarchical
cluster analysis procedures such as the K-means method. It has been shown
that such a LC-based clustering procedure outperforms the more ad hoc
traditional methods. The method is known under names such as LATENT
PROFILE MODEL, mixture-model clustering, model-based clustering, latent
discriminant analysis, and LC clustering. The basic formula of this model is
similar to one given in equation (1); that is,

c
FIY =)= 2 P(X = 2)f(Y = y|X = ).

As shown by this slightly more general formulation, the probabilities P(...)
are replaced by densities f(...). With continuous variables, the class-specific
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densities f(Y = y|X = z) will usually be assumed to be (restricted) mul-
tivariate normal, where each LC has its own mean vector and covariance
matrix. Note that this is a special case of the more general principle of
density estimation by finite mixtures of simple densities.

Another important application of LC analysis is as a NONPARAMETRIC
RANDOM-EFFECTS MODEL. The idea underlying this application is that the
parameters of the regression model of interest may differ across unobserved
subgroups. For this kind of analysis, often referred to as LC regression analy-
sis, the LC variable serves the role of a MODERATING VARIABLE. The method
is very similar to regression models for repeated measures or two-level data
sets, with the difference that no assumptions are made about the distribution
of the random coefficients.

Software

The first LC program, MLLSA, made available by Clifford Clogg in 1977, was
limited to a relative small number of nominal variables. Today’s program can
handle many more variables, as well as other scale types. For example, the
LEM program (Vermunt, 1997) provides a command language that can be
used to specify a large variety of models for categorical data, including LC
models. Mplus is a command language based structural equation modeling
package that implements some kinds of LC models, but not for nominal
indicators. In contrast to these command language programs, Latent GOLD
is a program with an SPSS-like user interface that is especially developed
for LC analysis. It implements the most important types of LC models,
deals with variables of different scale types, and extends the basic model to
include covariates, local dependencies, several latent variables, and partially
observed indicators.
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