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Abstract 

Given multivariate data, many research questions pertain to the covariance structure: 

whether and how the variables (for example, personality measures) covary. Exploratory factor 

analysis (EFA) is often used to look for latent variables that may explain the covariances among 

variables; for example, the Big Five personality structure. In case of multilevel data, one may 

wonder whether or not the same covariance (factor) structure holds for each so-called ‘data 

block’ (containing data of one higher-level unit). For instance, is the Big Five personality 

structure found in each country or do cross-cultural differences exist? The well-known 

multigroup EFA framework falls short in answering such questions, especially for numerous 

groups/blocks. We introduce mixture simultaneous factor analysis (MSFA), performing a 

mixture model clustering of data blocks, based on their factor structure. A simulation study 

shows excellent results with respect to parameter recovery and an empirical example is included 

to illustrate the value of MSFA. 

 

Keywords: factor analysis, mixture model clustering, multilevel data, latent variables  
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1. Introduction 

Given multivariate data, researchers often wonder whether the variables covary to some 

extent and in what way. For instance, in personality psychology, there has been a debate about 

the structure of personality measures (i.e., the ‘Big Five’ versus ‘Big Three’ debate; De Raad 

et al., 2010). Similarly, emotion psychologists have discussed intensely whether and how 

emotions as well as norms for experiencing emotions can be meaningfully organized in a low-

dimensional space (e.g., Ekman, 1999; Fontaine, Scherer, Roesch, & Ellsworth, 2007; Russel 

& Barrett, 1999; Stearns, 1994). Factor analysis (Lawley & Maxwell, 1962) is an important 

tool in these debates as it explains the covariance structure of the variables by means of a few 

latent variables, called factors. When the researchers have a priori assumptions on the number 

and nature of the underlying latent variables, confirmatory factor analysis (CFA) is often used, 

whereas exploratory factor analysis (EFA) is applied when one has no such assumptions. 

Research questions about the covariance structure get further ramifications when the 

data have a multilevel structure; for instance, when personality measures are available for 

inhabitants from different countries. We will refer to data organized according to the higher 

level units (e.g., the countries) as ‘data blocks’. For multilevel data, one can wonder whether or 

not the same structure holds for each data block. For example, is the Big Five personality 

structure found in each country or not (De Raad et al., 2010)? Similarly, many cross-cultural 

psychologists argue that the structure of emotions and emotion norms differ between cultures 

(Eid & Diener, 2001; Fontaine, Poortinga, Setiadi, & Markam, 2002; MacKinnon & Keating, 

1989; Rodriguez & Church, 2003). 

When looking for differences and similarities in covariance structures, using EFA is 

very advantageous because it leaves more room for finding differences than CFA does (see 

Section 2.3). For instance, in the emotion norm example (Eid & Diener, 2001), one may very 

well expect two latent variables to show up in each country corresponding to approved and 



MIXTURE SIMULTANEOUS FACTOR ANALYSIS 4 

disapproved emotions, while being clueless about which emotions will be (dis)approved and 

how this differs across countries. In search for such differences and similarities, one may 

perform a multigroup or multilevel1 EFA (Dolan, Oort, Stoel, & Wicherts, 2009; Hessen, 

Dolan, & Wicherts, 2006; Muthén, 1991), or an EFA per data block. These methods fall short 

in answering the research question at hand, however. Multigroup/multilevel EFA can be used 

to test whether or not between-group differences in factors are present, but neither of them 

indicate how they are different and for which data blocks. When multigroup/multilevel EFA 

indicates the presence of between-block differences, one can compare the block-specific EFA 

models to pinpoint differences and similarities. But when many groups are involved, the 

numerous pairwise comparisons are neither practical nor insightful; i.e., it is hard to draw 

overall conclusions based on a multitude of pairwise similarities and dissimilarities. For 

instance, in Section 4, we present data on emotion norms for 48 countries. Since multigroup 

EFA indicates that the factor structure is not equal across groups, comparing the group-specific 

structures would be the next step. It would be a daunting task, however, with no less than 1128 

pairwise comparisons. More importantly, subgroups of data blocks may exist that share 

essentially the same structure and finding these subgroups is substantively interesting. 

Multilevel mixture factor analysis (MLMFA; Varriale & Vermunt, 2012) performs a mixture 

clustering of the data blocks based on some parameters of their underlying factor model, but it 

does not allow the factors themselves to differ across the data blocks. 

Within the deterministic modeling framework however, a method exists that clusters 

data blocks based on their underlying covariance structure and performs a simultaneous 

component analysis (SCA, which is a multigroup extension of standard principal component 

                                                           

1 Note that multilevel EFA (Muthén, 1991) models the pooled within-block covariance 

structure and the covariance structure of the block-specific means by lower- and higher-level 

factors, respectively. A connection between equality of the lower- versus higher-order factor 

structure and invariance of within-block factors across data blocks has been shown (Jak, Oort, 

& Dolan, 2013), however. 
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analysis; Timmerman & Kiers, 2003) per cluster. The so-called ‘clusterwise SCA’ (De Roover, 

Ceulemans, & Timmerman, 2012; De Roover, Ceulemans, Timmerman, Nezlek, & Onghena, 

2013; De Roover, Ceulemans, Timmerman, & Onghena, 2013; De Roover et al., 2012) has 

proven its merit in answering questions pertaining to differences and similarities in covariance 

structures (Brose, De Roover, Ceulemans, & Kuppens, 2015; Krysinska, et al., 2014). However, 

the method also has an important drawback, which follows from its deterministic nature, in that 

no inferential tools are provided for examining parameter uncertainty (e.g., standard errors, 

confidence intervals), conducting hypothesis tests (e.g., to determine which factor loading 

differences between clusters are significant), and performing model selection. Furthermore, 

even though similarities between component and factor analyses have been well-documented 

(Ogasawara, 2000; Velicer & Jackson, 1990; Velicer, Peacock, & Jackson, 1982), the 

theoretical status of components and factors is not the same (Borsboom, Mellenbergh, & van 

Heerden, 2003; Gorsuch, 1990). Therefore, to examine covariance structure differences in 

terms of differences in underlying latent variables (i.e., unobservable variables that have a 

causal relationship to the observed variables), such as the above-mentioned personality traits 

and affect dimensions, an EFA-based method is to be preferred. 

Therefore, we introduce mixture simultaneous factor analysis (MSFA), which 

encompasses a mixture model clustering of the data blocks, based on their underlying factor 

structure. MSFA can be estimated by means of Latent GOLD (LG; Vermunt & Magidson, 

2013) or Mplus (Muthén & Muthén, 2005). Even though the stochastic framework provides 

many inferential tools, various adaptations of the software will be necessary to reach the full 

inferential potential of the MSFA method (i.e., for the tools to be applicable for MSFA, as will 

be explained later on). Therefore, this paper focuses mainly on the model specification and an 

extensive evaluation of the goodness-of-recovery, i.e., how well MSFA recovers the clustering 

as well as the cluster-specific factor models.  
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The remainder of this paper is organized as follows: In Section 2, the multilevel 

multivariate data structure and its preprocessing is discussed, as well as the model specifications 

of MSFA, followed by its model estimation and its relations to existing mixture and/or 

multilevel factor analysis methods. In Section 3, the performance of MSFA is evaluated in an 

extensive simulation study. Section 4 illustrates the method with an application. Finally, Section 

5 concludes the paper with points of discussion and directions for future research. 

 

2. Mixture Simultaneous Factor Analysis 

2.1. Data Structure and Preprocessing 

We assume multilevel data, which implies that observations or lower-level units are 

nested within higher-level units (e.g., patients within hospitals, pupils within schools, 

inhabitants within countries). Both the lower- and the higher-level units are assumed to be a 

random sample of the population of lower- and higher-level units, respectively. We will index 

the higher-level units by i = 1, …, I and the lower-level units by ni = 1, …, Ni. The data of each 

higher-level unit i is gathered in a Ni × J data matrix or ‘data block’ Xi, where J denotes the 

number of variables. Since MSFA focuses on modeling the covariance structure of the data 

blocks (within-block structure; Muthén, 1991), irrespective of differences and similarities in 

their mean level (between-block structure), all data blocks are columnwise centered before the 

analysis. 

 

2.2. Model Specification 

MSFA applies common factor analysis at the observation level and a mixture model at 

the level of the data blocks. Specifically, we assume (1) that the observations are sampled from 

a mixture of normal distributions that differ with respect to their covariance matrices, but all 
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have a zero mean vector (which corresponds to all data blocks being columnwise centered 

beforehand, see Section 2.12), and (2) that all observations of a data block are sampled from the 

same normal distribution. 

More formally, the MSFA model can be written as follows: 
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where f is the total population density function, and θ refers to the total set of parameters. 

Similarly, fk refers to the kth cluster-specific density function and θk refers to the corresponding 

set of parameters. The latter densities are specified as K normal distributions, the covariance 

matrices of which are modeled by cluster-specific factor models. Thus, θk refers to the cluster-

specific factor loadings in the J × Q matrix kΛ  (implying the number of factors Q to be the 

same across clusters3) and the unique variances on the diagonal of kD . The mixing proportions 

(i.e., the prior probabilities of a data block belonging to each of the clusters) are indicated by 

k , with 
1

1
K

k

k




 . Equation 1 implies the following additional assumptions: Firstly, the 

cluster-specific covariance matrices are perfectly modeled by the corresponding low-rank 

cluster-specific factor models (i.e., no residual covariances, implying that kD is a diagonal 

matrix). Secondly, within each block, the observations are locally independent, warranting the 

use of the multiplication operator in Equation 1. Thirdly, we impose the factor scores and the 

residuals to be normally distributed for each data block, with the covariance matrix of the factor 

scores being an identity matrix and that of the residuals being equal to kD . In this paper, the 

                                                           
2 An alternative would be to include block-specific (rather than cluster-specific) means in the model (see Section 

5). This does not affect the obtained solution. 
3 Allowing for a different number of factors across the clusters complicates the comparison of cluster-specific 

models and implies a severe model selection problem (e.g., De Roover, Ceulemans, Timmerman, Nezlek, & 

Onghena, 2013) that needs to be scrutinized in future research. 
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factor (co)variance matrix is restricted to equal identity for each data block, in order to capture 

all differences in observed-variable covariances by means of the cluster-specific factor loadings 

– which implies creating the exact stochastic counterpart of the clusterwise SCA variant 

described by De Roover and colleagues (2012). This has the interpretational advantage of 

establishing all structural differences without having to inspect the (possibly many) block-

specific factor (co)variances. Of course, more flexible model specifications in terms of the 

factor (co)variances are possible. Note that the cluster-specific factors have rotational freedom, 

which we take into account by using a rotational criterion, such as VARIMAX (Kaiser, 1958) 

or generalized Procrustes rotation (Kiers, 1997) that enhances the interpretability of the factor 

loading structures. Because factor rotation is not yet included in LG, we take the loadings 

estimated by LG 5.1 and rotate them in Matlab R2015b. 

By means of Bayes’ theorem, the posterior classification probabilities of the data blocks 

can be calculated, giving information regarding the blocks’ cluster memberships and the 

uncertainty about this clustering. Specifically, these probabilities pertain to the posterior 

distribution (i.e., conditional on the observed data) of the latent cluster memberships zik: 
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2.3. Relations to existing methods 

Since MSFA is an exploratory method, we omit related confirmatory methods like 

mixture factor analysis (Lubke & Muthén, 2005; Muthén, 1989; Yung, 1997), factor mixture 

analysis (Blafield, 1980; Yung, 1997), multilevel factor mixture modeling (Kim, Joo, Lee, 

Wang, & Stark, 2016), and a number of multigroup CFA extensions (Asparouhov & Muthén, 

2014; Jöreskog, 1971; Muthén & Asparouhov, 2013; Sörbom, 1974). As mentioned in the 
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Introduction, methods based on CFA leave less room to find differences. Indeed, CFA imposes 

an assumed structure of zero-loadings upon the factors; thus, CFA-based methods can only 

account for differences in the size of the freely estimated (i.e., non-zero) factor loadings. 

Specifically, we compare MSFA to (1) a non-multilevel mixture EFA model, called ‘mixtures 

of factor analyzers’ (MoFA; McLachlan & Peel, 2000), and (2) a multilevel mixture EFA 

model: MLMFA (Varriale & Vermunt, 2012). 

MoFA performs a mixture clustering of individual observations based on their 

underlying EFA model. The observation-level clusters differ with respect to their intercepts, 

factor loadings and unique variances, whereas the factors have means of zero and an identity 

covariance matrix per cluster. In contrast, MSFA deals with block-centered multilevel data and 

clusters data blocks (instead of individual observations) based on their factor loadings and 

unique variances (omitting the intercepts). 

MLMFA models between-block differences in intercepts, factor means and unique 

variances by a mixture clustering of the data blocks, but MLMFA requires equal factor loadings 

across blocks. Hence, the MLMFA model specification differs in the following respects from 

MSFA. Firstly, unlike in MSFA, the cluster-specific means of the K multivariate normal 

distributions are not restricted to zero and capture between-block differences in mean levels on 

either the observed variables (intercepts) or the latent variables (factor means). Secondly, unlike 

MSFA, MLMFA models differences in covariance structures by means of differences in unique 

variances and factor (co)variances but not by differences in factor loadings (i.e., in contrast to 

Equation 1, loadings are common across clusters). Thus the range of covariance differences that 

MLMFA can capture is rather limited when compared to MSFA. Moreover, since both mean 

levels and covariance structures are taken into account, the MLMFA clustering will often be 

dominated by the means because they have a larger influence on the fit, whereas with MSFA 

mean differences are discarded. 
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2.4. Model Estimation 

The unknown parameters θ of the MSFA model are estimated by means of maximum 

likelihood (ML) estimation. This involves maximizing the logarithm of the likelihood function: 
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where X is the N × J data matrix – with 
1

I

i

i

N N


  – that is obtained by vertically concatenating 

the I data blocks Xi. Note that the likelihood function is computed as a product of the likelihood 

contributions of the I data blocks, assuming that they are a random sample and thus mutually 

independent. To find the parameter estimates ̂  that maximize Equation 3, maximum 

likelihood estimation is performed by LG, which uses a combination of an EM algorithm and a 

Newton-Raphson algorithm (see Appendix 1). Because the standard random starting values 

procedure turned out to be rather prone to local maxima (especially when the number of clusters 

or factors increases), we experimented with alternative starting procedures. Appendix 1 

describes the procedure we used, which involves starting with a PCA solution to which 

randomness is added. 

  

3. Simulation Study 

3.1.  Problem 

To evaluate the model estimation performance in terms of the sensitivity to local 

maxima and goodness of recovery, data sets were generated (by LG 5.1) from an MSFA model 

with a known number of clusters K and factors Q. We manipulated six factors that all affect 
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cluster separation: (1) the between-cluster similarity of factor loadings, (2) the number of data 

blocks, (3) the number of observations per data block, (4) the number of underlying clusters 

and (5) factors, and (6) between-variable differences in unique variances. Factor 1 pertains to 

the similarity of the clusters and we anticipate the performance to be lower when clusters have 

more similar factor loadings. Factors 2 and 3 pertain to sample size. We expect the MSFA 

algorithm to perform better with increasing sample sizes (i.e., more data blocks and/or 

observations per data block) (de Winter*, Dodou* & Wieringa, 2009; Steinley & Brusco, 2011). 

With respect to Factors 4 and 5, i.e., the complexity of the underlying model, we hypothesize 

that the performance will decrease with increasing complexity (de Winter*, Dodou* & 

Wieringa, 2009; Steinley & Brusco, 2011). Factor 6, between-variable differences in unique 

variances, was manipulated to study whether and to what extent the performance of MSFA is 

affected by these differences. Theoretically, MSFA should be able to deal with these differences 

perfectly (Section 2.2), in contrast to the existing clusterwise SCA which makes no distinction 

between common and unique variances (De Roover et al. 2012). 

 

3.2. Design and Procedure 

The six factors were systematically varied in a complete factorial design: 

1. the between-cluster similarity of factor loadings at 2 levels: medium, high similarity; 

2. the number of data blocks I at 3 levels: 20, 100, 500; 

3. the number of observations per data block Ni at 5 levels: for the sake of simplicity, Ni 

is chosen to be the same for all data blocks; specifically, equal to 5, 10, 20, 40, 80; 

4. the number of clusters K at 2 levels: 2, 4; 

5. the number of factors Q at 2 levels: 2, 4; 

6. between-variable differences in unique variances: differences among the diagonal 

elements in Dk (k = 1, …, K) are either absent or present (explained below); 
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With respect to the cluster-specific factor loadings, a binary simple structure matrix was 

used as a common base for each kΛ . In this base matrix, the variables are equally divided over 

the factors, i.e., each factor gets six loadings equal to one in the case of two factors, and three 

loadings equal to one in case of four factors (see Table 1). To obtain medium between-cluster 

similarity (factor 1), each cluster-specific loading matrix kΛ  was derived from this base matrix 

by shifting the high loading to another factor for two variables, whereas these variables differ 

among the clusters (see Table 1). For the high similarity level, each kΛ  was constructed from 

the base matrix by adding, for each of two variables, a crossloading of √(.4) and lowering the 

primary loading accordingly (see Table 1). Note that the factor loadings are constructed such 

that each observed variable has the same common variance per cluster – i.e., (1 – ek), where ek 

is the mean of the unique variances within a cluster. To quantify the similarity of the obtained 

cluster-specific factor loading matrices, they were orthogonally Procrustes rotated to each other 

(i.e., for each pair of kΛ  matrices, one was chosen to be the target matrix and the other was 

rotated towards the target matrix) and a congruence coefficient   (Tucker, 1951) was 

computed4 for each pair of corresponding factors in all pairs of kΛ  matrices, where a congruence 

of one indicates that the two factors are proportionally identical. Subsequently, a grand mean 

of the obtained  -values was calculated, over the factors and cluster pairs. On average,   

amounted to .73 for the medium similarity condition and .93 for the high similarity condition.  

[Insert Table 1 about here] 

                                                           
4 The congruence coefficient (Tucker, 1951) between two column vectors x and y is defined as their normalized 

inner product: 


 
xy

x y
=

x x y y
. 
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Regarding factor 6, the first level of this factor was realized by simply setting each 

diagonal element of Dk equal to ek. For the second level, differences in unique variance were 

introduced by ascribing a unique variance of (ek − ek/2) to a randomly chosen half of the 

variables and a unique variance of (ek + ek/2) to the other half of the variables. 

The simulated data were generated as follows: The number of variables J was fixed at 

12 and an overall unique variance ratio e of .40 was pursued for all simulated data sets, where 

1 1

1 1
( )

K K

k k

k k

e trace e
JK K 

  D . Between-cluster differences in ek were introduced for all data 

sets, because they are usually present in empirical data sets. Specifically, in case of two clusters, 

the ek values are .20 and .60, whereas in case of four clusters, the intermediate values of .30 and 

.50 are added for the additional clusters. To keep the overall variance equal across the clusters, 

the kΛ  matrices were rowwise rescaled by 1 ke . Finally, to make the simulation more 

challenging, the cluster sizes were made unequal. Specifically, the data blocks are divided over 

the clusters such that one cluster is three times smaller than the other cluster(s). Thus, in case 

of two clusters, 25% of the data blocks were in one cluster and 75% in the other one. In case of 

four clusters, the small cluster contained 10% of the data blocks whereas the other clusters 

consisted of 30% each. The cluster memberships were generated by randomly assigning the 

correct number of data blocks to each cluster, according to these cluster sizes. 

For each cell of the factorial design, 20 raw data matrices r
X were generated, using the 

LG simulation procedure, as described in Appendix 3. The 
r

iX  matrices resulting from the 

procedure were centered per variable, and their vertical concatenation yields the total data 

matrix X. In total, 2 (between-cluster similarity of factor loadings) × 3 (number of data blocks) 

× 5 (number of observations per data block) × 2 (number of clusters) × 2 (number of factors) × 

2 (between-variable differences in unique variances) × 20 (replicates) = 4,800 simulated data 
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matrices were generated. Each data matrix X was analyzed by means of a LG syntax specifying 

an MSFA model with the correct number of clusters K and factors Q (e.g., Appendix 2) and 

applying 25 different sets of initial values (generated as described in Appendix 1). No 

convergence problems were encountered in this simulation study. 

 

3.3. Results 

First, the sensitivity to local maxima is evaluated. Secondly, the goodness of recovery 

is discussed for the different aspects of the MSFA model: the clustering, the cluster-specific 

factor loadings, and the cluster-specific unique variances. Thirdly, as an instance of the 

inferential tools provided by LG, the standard errors of the parameter estimates are assessed. 

Finally, some overall conclusions are drawn. 

3.3.1. Sensitivity to local maxima 

To evaluate the occurrence of local maximum solutions, we should compare the log L 

value of the best solution obtained by the multistart procedure with the global ML solution for 

each simulated data set. The global maximum is unknown, however, because the simulated data 

do not perfectly comply with the MSFA assumptions and contain error. Alternatively, we make 

use of a ‘proxy’ of the global ML solution; i.e., the solution that is obtained when the algorithm 

applies the true parameter values as starting values. The final solution from the multistart 

procedure is then considered to be a local maximum when its log L value is smaller than the 

one from the proxy. By this definition, only 227 (4.7%) local maxima were detected over all 

4,800 simulated data sets. Not surprisingly, most of these occur in the more difficult conditions; 

e.g., 179 of the 227 local maxima are found in the conditions with a high between-cluster 

similarity of the factor loadings and 153 are found for the most complex models, i.e., when K 

as well as Q equal four. 
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3.3.2. Goodness of cluster recovery 

To examine the goodness of recovery of the cluster memberships of the data blocks, we 

will (1) compare the modal clustering (i.e., assigning each data block to the cluster for which 

the posterior probability is the highest) to the true clustering, and (2) investigate the degree of 

certainty of these classifications. To compare the modal clustering to the true one, the Adjusted 

Rand Index (ARI; Hubert & Arabie, 1985) is computed. The ARI equals 1 if the two partitions 

are identical, and equals 0 when the overlap between the two partitions is at chance level. The 

mean ARI over all data sets amounts to .93 (SD = 0.18), which indicates a good recovery. The 

ARI was affected most by the amount of available information. Specifically, the mean ARI for 

the conditions with only 20 data blocks and five observations per block was only .51, whereas 

the mean over the other conditions was .96. 

To examine the ‘classification certainty’ (CC), we computed the following statistics: 

 

 
 1 1

1

ˆ

ˆand min

I K

ik ik K
i k

mean min ik ik
i

k

z z

CC CC z z
I



 



 


  (4) 

where  ikz  and ˆ
ikz  indicate the posterior probabilities (Equation 2) and the modal cluster 

memberships (i.e., estimates of the latent cluster membership zik), respectively. On average, 

CCmean and CCmin amount to .9983 (SD = 0.007) and .94 (SD = 0.14), respectively, indicating a 

very high degree of certainty for the simulated data sets. Because CCmean hardly varies over the 

simulated data sets, we focused on CCmin and inspected to what extent it is related to cluster 

recovery. To this end, a scatter plot of CCmin versus the ARI is given in Figure 1. From this 

figure, it is apparent that lack of classification certainty often does not coincide with 

classification error or the other way around. 

3.3.3. Goodness of loading recovery 



MIXTURE SIMULTANEOUS FACTOR ANALYSIS 16 

To evaluate the recovery of the cluster-specific loading matrices, we obtained a 

goodness-of-cluster-loading-recovery statistic (GOCL) by computing congruence coefficients 

  (Tucker, 1951) between the loadings of the true and estimated factors and averaging across 

factors and clusters as follows: 

 

 
1 1

ˆ,
QK

kq kq

k q
GOCL

KQ


 



 λ λ

 (5) 

with kqλ  and ˆ
kqλ  indicating the true and estimated loading vector of the q-th factor for cluster 

k, respectively. The rotational freedom of the factors per cluster was dealt with by an orthogonal 

procrustes rotation of the estimated towards the true loading matrices. To account for the 

permutational freedom of the cluster labels, the permutation was chosen that maximizes the 

GOCL value. The GOCL statistic takes values between 0 (no recovery at all) and 1 (perfect 

recovery). For the simulation, the average GOCL is .98 (SD = 0.04), which corresponds to an 

excellent recovery. As for the clustering, the loading recovery depends strongly on the amount 

of information; i.e., the mean GOCL is .87 for the conditions with only 20 data blocks and five 

observations per block and .99 for the remaining conditions. 

3.3.4. Goodness of unique variance recovery 

To quantify how well the cluster-specific unique variances are recovered, we calculated 

the mean-absolute-difference (MAD) between the true and estimated unique variances: 

 
1 1

ˆ
K J

kj kj

k j

uniq

d d

MAD
KJ

 






 (6) 

On average, the MADuniq was equal to .06 (SD = 0.06). Like the cluster and loading recovery, 

the unique variance recovery depends most on the amount of information; i.e, the MADuniq has 

a mean value of .22 for the conditions with 20 data blocks or five observations each and .05 for 
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the other conditions. Also, the MADuniq value is affected by the occurrence of Heywood cases 

(Van Driel, 1978), a common issue in factor analysis pertaining to ‘improper’ factor solutions 

with at least one unique variance estimated as being negative or equal to zero. When this occurs 

during the estimation process, LG restricts it to be equal to a very small number (Vermunt & 

Magidson, 2013). Therefore, for the simulation, we consider a solution to be a Heywood case 

when at least one unique variance in one cluster is smaller than .0001. This was the case for 

633 (13.2%) out of the 4,800 data sets, most of which occurred in the conditions with 20 blocks 

or five observations per block and thus with small within-cluster sample sizes (i.e., 601 out of 

the 633), or in case of four factors per cluster (i.e., 522 out of the 633). Specifically, the mean 

MADuniq is equal to .18 for the Heywood cases and .04 for the other cases. In the literature, a 

Heywood case has been considered a diagnostic of problems such as (empirically) 

underdetermined factors or insufficient sample size (McDonald & Krane, 1979; Rindskopf, 

1984; Van Driel, 1978; Velicer & Fava, 1998). 

3.4. Conclusion 

The low sensitivity to local maxima indicated that the applied multistart procedure is 

sufficient. The goodness-of-recovery for the clustering, and cluster-specific factor loadings and 

unique variances was very good, even in case of very subtle between-cluster differences in 

loading pattern, and was mostly affected by the within-cluster sample size. 

 

 

4. Application  

To illustrate the empirical value of MSFA, we applied it to cross-cultural data on norms 

for experienced emotions from the International College Survey (ICS) 2001 (Diener et al., 

2001; Kuppens, Ceulemans, Timmerman, Diener, & Kim-Prieto, 2006). The ICS study 

included 10,018 participants out of 48 different nations. Each of them rated, among other things, 
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how much each of 13 emotions (listed in Table 3) is appropriate, valued and approved in their 

society, using a 9-point likert scale (1 = “people do not approve it at all”, 9 = “people approve 

it very much”). Participants with missing data were excluded, so that 8894 participants are 

retained. Differences between the countries in the mean norm ratings were removed by 

centering the ratings per country (see Section 2.1). 

MSFA is applied to this data set to explore differences and similarities in the covariance 

structure of emotion norms across the countries. To this end, the number of clusters and factors 

to use needs to be specified. Within the stochastic framework of MSFA, different information 

criteria are readily available. Even though the BIC (Schwarz, 1978) is often used for factor 

analysis and/or clustering methods (Bulteel, Wilderjans, Tuerlinckx, & Ceulemans, 2013; 

Dziak, Coffman, Lanza, & Li, 2012; Fonseca & Cardoso, 2007), its performance for MSFA 

model selection still needs to be evaluated (see Section 5). Therefore, model selection is based 

on interpretability and parsimony for this empirical example. 

With respect to the number of factors, we a priori expect a factor corresponding to the 

positive (i.e., approved) emotions and a factor corresponding to the negative (i.e., disapproved) 

emotions. To explore this hypothesis and to confirm the presence of factor loading differences, 

we performed multigroup EFA by means of the R packages Lavaan 0.5-15 and SemTools 0.4-

0 (Rosseel, 2012). A multigroup EFA with group-specific loadings for one factor indicated a 

bad fit (CFI = .74, RMSEA = .14), whereas the fit for two (group-specific and orthogonal) 

factors was excellent (CFI = .99, RMSEA = .03) (Hu & Bentler, 1999); thus, supporting the 

hypothesis of two factors. When restricting the loadings of these two factors to be invariant 

across countries, the fit dropped severely (CFI = .78, RMSEA = .12). The latter confirms that 

the countries differ in their factor loadings and, thanks to MSFA, the 1128 pairwise comparisons 

across the 48 country-specific EFA models are no longer needed to explore these differences.  
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The comparison of MSFA models with different numbers of clusters and two factors 

per clusters indicated that, in general, the same two extreme factor structures were always 

found, with the additional clusters only leaving more room for setting apart data blocks with an 

‘intermediate’ factor structure. Thus, we select the MSFA model with two clusters and two 

factors per cluster. The clustering of the selected model is given in Table 2. Most countries are 

assigned to the clusters with a posterior probability of 1, whereas a negligible amount of 

classification uncertainty is found for Slovakia and South Africa. In order to validate and 

interpret the obtained clusters, we looked into some demographic measures that were available 

on the countries. An interesting difference between the clusters pertained to the Human 

Development Index (HDI) 1998, which was available from the Human Development Report 

2000 (United Nations Development Programme, 2000) for 47 out of the 48 countries in the ICS 

study (i.e., only lacking for Kuwait). The HDI takes on values between 0 and 1 and measures 

the average achievements in a country in terms of life expectancy, knowledge and a decent 

standard of living. Figure 2a depicts boxplots of the HDI per cluster and shows that Cluster 1 

contains less developed countries. Another aspect distinguishing the clusters was the level of 

conservatism (Schwartz, 1994), which was available for half of the countries only. 

Conservatism corresponds to a country’s emphasis on maintaining the status quo, propriety, 

and restraining actions or desires that may disrupt group solidarity or traditional order. 

Specifically, as Figure 2b shows, the countries in Cluster 1 are more conservative than the ones 

in Cluster 2. 

To shed light on how the covariance structure of emotion norms differs between the 

conservative and less developed countries on the one hand and the progressive and developed 

countries on the other hand, we first look at the varimax rotated cluster-specific factor loading 

matrices in Table 3. As expected, the two factors correspond to positive/approved and 

negative/disapproved emotions, respectively, and they do so in both clusters, indicating that the 
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within-country covariance structures have much in common. In addition to slight differences in 

the size of primary and/or secondary loadings, the most important and interesting cross-cultural 

difference is found with respect to ‘pride’. Specifically, in Cluster 1, the primary loading of 

‘pride’ is on the ‘negative’ factor, whereas, in Cluster 2, its primary loading is on the ‘positive’ 

factor. Thus, by applying MSFA, we conveniently learned that in the conservative and less 

developed countries of Cluster 1, pride is a disapproved emotion, while in the progressive, 

developed countries of Cluster 2, pride is more positively valued by society. Possibly, in Cluster 

1 pride is considered to be an expression of arrogance and superiority, whereas in Cluster 2 it 

is regarded a sign of self-confidence, which is a valued trait in progressive and developed 

countries. To complete the picture of the covariance differences, the cluster-specific unique 

variances are given in Table 4. From this table, it is apparent that all items have a higher unique 

variance in Cluster 2, implying that they have more idiosyncratic variability in the progressive, 

developed countries. 

In addition to the visual comparison of the cluster-specific loadings (and unique 

variances), hypothesis testing is useful to discern which differences are significant or not. By 

default, Latent GOLD provides the user with results of Wald tests for factor loading differences 

across clusters (Vermunt & Magidson, 2013). We need to eliminate the rotational freedom of 

the cluster-specific factors for these results to make sense, however (see Section 5). This can 

be done by a sensible set of loading restrictions such as echelon rotation (Dolan, Oort, Stoel, & 

Wicherts, 2009; McDonald, 1999) and choosing these restrictions is easier in case of less 

clusters and less factors per cluster. In Table 3 (above), we see that ‘jealousy’ has a loading of 

(almost) zero in both clusters. Restricting this loading to be exactly zero in both clusters imposes 

echelon rotation and solves the rotational freedom. The resulting clusters-specific loadings are 

given in the lower portion of Table 3 and they hardly differ (i.e., the difference is never larger 

than .03) from the Varimax rotated ones. As indicated by a ** or * behind the loadings (Table 
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3, below), 8 factor loadings are significantly different between the clusters at the 1% level, 

whereas 10 are significantly different at the 5% level (Bonferroni correction for multiple testing 

was applied)5. 

 

5. Discussion 

In this paper, we presented mixture simultaneous factor analysis, a novel exploratory 

method for clustering groups (i.e., higher-level units or ‘data blocks’, in general) with respect 

to the underlying factor loading structure as well as their unique variances. When researchers 

have statistical, empirical or theoretical reasons to expect possible differences, MSFA provides 

a solution to evaluate which differences exist and for which blocks. The solution is 

parsimonious because of the clustering of the data blocks, implying that only a few cluster-

specific factor loading matrices need to be compared to pinpoint the differences in factor 

structure. Moreover, the clustering is often an interesting result in itself. 

In this paper, the MSFA model was specified as the exact stochastic counterpart of 

clusterwise SCA-ECP (De Roover et al., 2012), i.e., with block-specific factor (co)variance 

matrices equal to identity, such that all differences in observed-variable covariances are 

captured between the clusters, by their cluster-specific factor loading matrices. Of course, in 

some cases, more flexible specifications are preferable; for instance, when one wants data 

blocks with the same factors but different factor (co)variances to be assigned to the same cluster. 

Another alternative model specification may include block-specific intercepts, instead of using 

                                                           
5 Note that Wald-test results are also available for differences in unique variances. For the 

emotion norm data set, all between-cluster differences in unique variances were significant at 

the 1% level. 
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data block centering, thus preserving information on block-specific mean levels and capturing 

them in the model.  

In contrast to clusterwise SCA, MSFA provides information on classification 

uncertainty, when present. Also, common variance is distinguished from unique variance 

(including measurement error). Thus, in specific cases wherein the unique variances differ 

strongly between variables and/or between clusters, MSFA will capture the underlying latent 

structures and the corresponding clustering more accurately. When this is not the case, 

clusterwise SCA may give similar results. 

Of course, when pursuing inferential conclusions, the stochastic framework is to be 

preferred. For instance, it may be interesting to look at the standard errors of the parameter 

estimates. More importantly, with respect to the factor loading differences, one may argue that 

visual comparison of the cluster-specific loadings is too subjective. Conveniently, hypothesis 

testing for factor loading differences is available within the stochastic framework of MSFA and 

in LG (see Section 4). As stated in the Introduction, these inferential tools are not yet readily 

applicable for MSFA, which is due to the rotational freedom of the cluster-specific factors. For 

now, for the standard errors and Wald test results to make sense, rotational freedom can be 

eliminated by imposing loading restrictions, as was illustrated in Section 4. To avoid this choice 

of restrictions and its possible influence on the clustering, standard error estimation should be 

combined with the specification of rotational criteria for the cluster-specific factor structures. 

It is important to note that the factor rotation of choice affects which differences are found 

between the clusters, be it visually or by means of hypothesis testing. Therefore, future research 

will include evaluating the influence and suitability of different rotational criteria. Rotational 

criteria pursuing both between-cluster agreement and simple structure of the loadings seem 

appropriate (Kiers, 1997; Lorenzo-Seva, Kiers, & ten Berge, 2002) and the criteria can be 
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converted into loading constraints to be imposed directly during maximum likelihood 

estimation (Archer & Jennrich, 1973; Jennrich 1973). 

The rotational freedom per cluster is a consequence of our choice for an exploratory 

approach (i.e., using EFA instead of CFA per cluster). Developing an MSFA variant with CFA 

within the clusters might be interesting for very specific cases like imposing the Big Five 

structure of personality for one cluster and the Big Three for the other cluster (De Raad et al., 

2010) to see which countries end up in which cluster. Note that a priori assumptions on the 

underlying factor structure(s) can also be useful for the current, exploratory MSFA, i.e., as a 

target structure when rotating the cluster-specific factor structures and when selecting the 

number of factors. 

Finally, the obtained factor loading differences and clusters depend on the number of 

clusters as well as the number of factors within the clusters. Therefore, solving the so-called 

‘model selection problem’ is imperative. To this end, the performance of the BIC for MSFA 

model selection will be thoroughly evaluated and adaptations will be explored if needed. The 

fact that the BIC performance needs to be scrutinized is illustrated by the fact that, for the 

application, the BIC selected seven clusters, which appears to be an overselection when 

comparing cluster-specific factors and considering the (lack of) interpretability and stability of 

the clustering. Adaptations that will be considered include the hierarchical BIC (Zhao, Jin, & 

Shi, 2015; Zhao, Yu, & Shi, 2013) and stepwise procedures like the one described by 

Lukočienė, Varriale and Vermunt (2010). Their performances will be investigated and 

compared, also for the more intricate case wherein the number of factors may vary across 

clusters.  
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Table 1. Base loading matrix and the derived cluster-specific loading matrices for Clusters 1 

and 2, in case of two factors (above) and in case of four factors (below). In case of medium 

similarity 1  equals 0 and 2  equals 1, whereas in case of high similarity 1  equals √(.6) and 

2  equals √(.4). When the number of clusters is four, the two additional loading matrices are 

constructed similarly, i.e., by shifting the primary loading or adding a crossloading for variables 

3 and 6 for Cluster 3, and for variables 4 and 7 for Cluster 4. 

 Base loading matrix  Cluster 1  Cluster 2 

 Factor 1 Factor 2  Factor 1 Factor 2  Factor 1 Factor 2 

Var. 1 1 0  
1  2   1 0 

Var. 2 1 0  1 0  
1  2  

Var. 3 1 0  1 0  1 0 

Var. 4 1 0  1 0  1 0 

Var. 5 1 0  1 0  1 0 

Var. 6 1 0  1 0  1 0 

Var. 7 0 1  
2  1   0 1 

Var. 8 0 1  0 1  
2  1  

Var. 9 0 1  0 1  0 1 

Var. 10 0 1  0 1  0 1 

Var. 11 0 1  0 1  0 1 

Var. 12 0 1  0 1  0 1 

         

 F1 F2 F3 F4  F1 F2 F3 F4  F1 F2 F3 F4 

Var. 1 1 0 0 0  
1  2  0 0  1 0 0 0 

Var. 2 1 0 0 0  1 0 0 0  
1  2  0 0 

Var. 3 1 0 0 0  1 0 0 0  1 0 0 0 

Var. 4 0 1 0 0  
2  1  0 0  0 1 0 0 

Var. 5 0 1 0 0  0 1 0 0  
2  1  0 0 

Var. 6 0 1 0 0  0 1 0 0  0 1 0 0 

Var. 7 0 0 1 0  0 0 1 0  0 0 1 0 

Var. 8 0 0 1 0  0 0 1 0  0 0 1 0 

Var. 9 0 0 1 0  0 0 1 0  0 0 1 0 

Var. 10 0 0 0 1  0 0 0 1  0 0 0 1 

Var. 11 0 0 0 1  0 0 0 1  0 0 0 1 

Var. 12 0 0 0 1  0 0 0 1  0 0 0 1 
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Table 2. Clustering of the countries of the MSFA model with two clusters and two factors 

per cluster for the emotion norm data from the 2001 ICS study. Except for Slovakia and South 

Africa, all countries are assigned to the clusters with a posterior probability  ikz  of 1. The 

probabilities for Slovakia and South Africa are given between brackets. 

Cluster 1 

Bangladesh, Brazil, Bulgaria, Cameroon, Georgia, Ghana, India, Iran, Nepal, 

Nigeria, Slovakia (  1iz = .9980), South  Africa (  1iz = .9965), Thailand, 

Turkey, Uganda, Zimbabwe 

Cluster 2 

Australia, Austria, Belgium, Canada, Chile, China, Colombia, Croatia, Cyprus, 

Egypt, Germany, Greece, Hong Kong, Hungary, Indonesia, Italy, Japan, 

Kuwait, Malaysia, Mexico, Netherlands, Philippines, Poland, Portugal, Russia, 

Singapore, Slovenia, South Korea, Spain, Switzerland, United States, 

Venezuela 
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Table 3. Varimax (above) and echelon (below) rotated loadings of the MSFA model with two 

clusters and two factors per cluster for the emotion norm data from the 2001 ICS study. For 

each emotion, the primary loading is indicated in bold face. Below, the restricted loadings are 

in italic and underlined and loadings that are significantly different across clusters (according 

to Wald tests and after Bonferroni correction) are indicated by ** (p < .01) and * (p < .05). 

Varimax rotation Cluster 1  Cluster 2 

 Positive Negative  Positive Negative 

Contentment 1.44 -0.25  1.21 -0.11 

Happy  1.60 -0.26  1.42 -0.15 

Love 1.39 -0.26  1.22 -0.06 

Sad -0.32 1.32  0.05 1.26 

Jealousy (in romantic situations) 0.00 1.29  -0.02 1.27 

Cheerful 1.18 -0.30  1.04 -0.05 

Worry -0.07 1.74  0.04 1.43 

Stress -0.25 2.01  -0.19 1.69 

Anger -0.37 1.97  -0.18 1.54 

Pride 0.27 1.10  0.60 0.35 

Guilt 0.05 1.24  0.11 1.10 

Shame 0.18 1.03  0.08 1.07 

Gratitude 0.95 -0.29  0.86 -0.12 

Echelon rotation Cluster 1  Cluster 2 

 Positive Negative  Positive Negative 

Contentment 1.44** -0.25  1.21** -0.13 

Happy  1.60** -0.26  1.42** -0.17 

Love 1.39* -0.26  1.22* -0.08 

Sad -0.32** 1.32  0.07** 1.26 

Jealousy (in romantic situations) 0 1.29  0 1.27 

Cheerful 1.18 -0.30*  1.04 -0.06* 

Worry -0.07 1.74**  0.07 1.43** 

Stress -0.25 2.01**  -0.16 1.69** 

Anger -0.37 1.97**  -0.16 1.54** 

Pride 0.27** 1.10**  0.61** 0.34** 

Guilt 0.05 1.24  0.13 1.10 
Shame 0.18 1.03  0.10 1.07 

Gratitude 0.95 -0.29  0.86 -0.14 
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Table 4. Unique variances of the MSFA model with two clusters and two factors per cluster for 

the emotion norm data from the 2001 ICS study.  

 Cluster 1 Cluster 2    

Contentment 1.47 3.48    

Happy  0.63 1.39    

Love 1.21 2.37    

Sad 2.76 4.19    

Jealousy (in romantic situations) 2.85 4.94    

Cheerful 1.53 2.38    

Worry 2.01 2.86    

Stress 2.15 2.63    

Anger 1.87 2.23    

Pride 3.41 5.33    

Guilt 2.80 4.42    

Shame 3.01 4.85    

Gratitude 2.88 3.95    
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Figure 1. Scatter plot of CCmin versus ARI for the simulated data sets.  
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a) b)  

Figure 2. Boxplots for (a) the HDI 1998 (United Nations Development Programme, 2000) and 

(b) the level of conservatism (Schwartz, 1994) of the countries per cluster of the MSFA model 

with two clusters and two factors per cluster for the ICS data set on emotion norms. 

  



MIXTURE SIMULTANEOUS FACTOR ANALYSIS 38 

 

Figure A1. ‘Example.txt’ file communicating the clustering (‘Cluster’), the number of variables 

(‘V2’ to ‘V13’) and the data block structure (‘V1’ and ‘rows’) to the simulation syntax for 

Latent Gold 5.1. Note that, in general, the number of rows may differ across data blocks. 
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Appendix 1: Maximum likelihood estimation of MSFA by LG 5.1. 

In this appendix, we consecutively elaborate on the MSFA algorithm and the multistart 

procedure that we recommend to use. An example of the syntax for estimating an MSFA model 

in LG 5.1. is given and clarified in Appendix 2. 

A1.1. Algorithm 

Two of the most common algorithms for ML estimation are Expectation-Maximization 

(EM; Dempster, Laird, & Rubin, 1977) and Newton-Raphson (NR; Jennrich, & Sampson, 

1976). In LG, a combination of both types of iterations is applied to benefit from the stability 

of EM when it is far from the maximum of log L, and the convergence speed of NR when it is 

close to the maximum (Vermunt & Magidson, 2013). 

A1.1.1. Expectation-maximization iterations 

As in all mixture models, log L (Equation 3) – also referred to as the ‘observed-data 

loglikelihood’ – is complicated by the latent clustering of the data blocks, making it hard to 

maximize log L directly. Therefore, the EM algorithm makes use of the so-called ‘complete-

data (log)likelihood’, i.e., the likelihood when the cluster memberships of all data blocks are 

assumed to be known or, in other words, the joint distribution of the observed and latent data: 

      | , , ; ( ; ) | ;L f f f X Z Z Z X ZX     (7) 

where Z is the I × K latent membership matrix, containing binary elements zik to indicate the 

cluster memberships. The probability density of the observed data conditional on the latent data 

is defined as follows: 

    
1 1 1

| ; ;
i

ik

i

i

NI K
z

k n k

i k n

f f
  

X Z x   (8) 
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and the probability density of the latent cluster memberships, or the so-called ‘prior distribution’ 

of the latent clustering, is given by a multinomial distribution such that: 

  
1 1

; ik

I K
z

k

i k

f 
 

Z   (9) 

with the mixing proportions k  as the ‘prior cluster probabilities’. When data block i belongs 

to cluster k (zik = 1), the corresponding factors in Equations 8 and 9 remain unchanged and, 

when the data block doesn’t belong to cluster k (zik = 0), they become equal to one. Inserting 

Equations 8 and 9 into Equation 7 leads to a complete-data likelihood function containing no 

summation. Therefore, the complete-data loglikelihood or ‘log Lc’ can be elaborated as follows: 
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 (10) 

From the summations in Equation 10, we conclude that one difficult maximization (i.e., 

of Equation 3) is replaced by a sequence of easier maximization problems (see Step 2 of the 

EM procedure). Because the values of zik are unknown, their expected values, i.e., the posterior 

classification probabilities  ikz  (Equation 2), are inserted in Equation 10, thus obtaining the 

expected value of log Lc or E(log Lc). Note that log L can be obtained by summing E(log Lc) 

over the K possible latent cluster assignments for each data block. 
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Starting from a set of initial values 0̂  for the parameters, the EM procedure performs 

the following two steps for each iteration  : 

1. E-step: The E(log Lc)-value given the current parameter estimates 1ˆ  (i.e., 0̂  when   = 1 

or the estimates from the previous iteration when   > 1) is determined as follows: 

1.1. The posterior classification probabilities  ikz  are calculated (Equation 2). 

1.2. The  ikz -values are inserted into Equation 10 to obtain E(log Lc) for 1ˆ  . 

2. M-step: The parameters ̂  are estimated such that E(log Lc) is maximized. Note that this 

also results in an increase with respect to log L (Dempster, Laird, & Rubin, 1977). 

2.1. An update of each k  – satisfying 
1

1
K

k

k




  – is given by (McLachlan & Peel, 2000): 
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 (11) 

2.2. For each cluster k, the factor model for kΣ  is obtained by weighting each observation 

by the corresponding  ikz -value and performing factor analysis on the weighted 

data. To this end, a separate EM algorithm (Rubin & Thayer, 1982) may be used or one 

of the alternatives described by Lee and Jennrich (1979). Currently, LG uses Fisher 

scoring to estimate the cluster-specific factor models. Fisher scoring (Lee & Jennrich, 

1979) is an approximation of the NR procedure described below. 

A1.1.2. Newton-Raphson iterations 

In contrast to EM, NR optimization operates directly on log L (Equation 3). Specifically, 

NR iteratively maximizes an approximation of log L, based on its first- and second-order partial 

derivatives, in the point corresponding to estimates 1ˆ  . Using these derivatives, NR updates 
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all model parameters at once. The first-order derivatives – with respect to parameters r , r = 1, 

…, R – are gathered in the so-called ‘gradient’ vector g:  

 
1 1 1

1 1 11

ˆ ˆ ˆlog ( ; ) log ( ; ) log ( ; )
... ...

I I I
i i i

i i ir R

f f f    

  

  

  

 
  
 
  

X X Xθ θ θ
g  (12) 

where R is equal to 1 ( )K K JQ J    for MSFA with orthogonal factors. The gradient vector 

indicates the direction of the greatest rate of increase in log L, where element gr is positive when 

higher values of log L can be found at higher values of θr and negative otherwise. The 

derivations of the elements of the gradient for an MSFA model are given in section A1.1.2.1. 

The matrix of second-order derivatives – also called the ‘Hessian’ or H – contains the 

following elements: 
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 (13) 

where Hrs refers to the element in row r and column s of H. Geometrically, the second-order 

derivatives refer to the curvature of the R-dimensional loglikelihood surface. Taking the 

curvature into account makes the update more efficient than an update based on the gradient 

alone (Battiti, 1992). H and g are combined in the NR update as follows: 

 
1 1ˆ ˆ     H gθ  (14) 

where the stepsize ε, 0 < ε < 1, is used to prevent a decrease in log L whenever a standard NR 

update 
1H g  causes a so-called ‘overshoot’ (for details, see Vermunt & Magidson, 2013). 

The calculations of the second-order derivatives make the NR update computationally very 

expensive. Therefore, LG applies an approximation of the Hessian which is given in section 

A1.1.2.1. 

A1.1.2.1. First- and second-order derivatives of observed-data loglikelihood 
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The first-order derivative of log L may be decomposed as: 
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where 
1

log ( ) log
I
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  is the loglikelihood contribution of cluster k. When defining the 

expected observed number of blocks and number of observations in cluster k as 
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  respectively, log Lk can be expressed in terms of the cluster-specific 

expected observed covariance matrix 
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The first derivative of log kL  thus becomes the following (Magnus & Neudecker, 2007): 
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such that  1 1 1
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Σ S Σ Σ  The second-order 

derivative of log kL is then equal to (Magnus & Neudecker, 2007): 
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Because the expected value of  k kS Σ  equals zero, the expected value of the second 

derivative of log kL becomes 
2

1 1log

' 2 '

k k k k
k k

d L N d d
E tr

d d d d   

    
   

  

Σ Σ
Σ Σ . Therefore, within LG, 

the second-order derivative of log L is approximated as: 
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A1.1.3. Convergence 

In practice, the estimation process starts with a number of EM iterations. When close to 

the final solution, the program switches to NR iterations to speed up convergence. Convergence 

can be evaluated with respect to log L or with respect to the parameter estimates. LG applies 

the latter approach (Vermunt & Magidson, 2013). More specifically, convergence is evaluated 

by computing the following quantity: 
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which is the sum of the absolute value of the relative changes in the parameters. The 

convergence criterion that is used for MSFA in this paper is   < 1×10−8. The iteration also 

stops when the change in log L is negligible, i.e., smaller than 1×10−12. 

It is important to note that, when convergence is reached, this is not necessarily a global 

maximum. To increase the probability of finding the global maximum, a multistart procedure 

is used, which is described in the next section. 

 

A1.2. Multistart procedure 

LG applies a tiered testing strategy with respect to sets of starting values (Vermunt & 

Magidson, 2013). Specifically, it starts from a user-specified number of sets (say 25), each of 

which is updated for a maximum number of iterations (e.g., 100) or until   is smaller than a 

specified criterion (e.g., 1 × 10-5). Subsequently, it continues with the 10% (rounded upwards) 
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most promising sets (i.e., with the highest log L), performing another two times the specified 

number of iterations (e.g., 2 × 100). Finally, it continues with the best solution until 

convergence. Note that such a procedure increases considerably the probability of finding the 

global ML solution, but does not guarantee it. Thus, one should remain cautious of local 

maxima. 

With respect to generating sets of starting values, a special option was added to the LG 

5.1 syntax module to create suitable initial values for the cluster-specific loadings and unique 

variances of MSFA. Specifically, the initial values are based on the loadings and residual 

variances of a principal component (PCA) model (Jolliffe, 1986; Pearson, 1901), in principal 

axes position, for the entire data set. This seems reasonable as typically loadings from PCA 

strongly resemble the ones of EFA (Widaman, 1993). To create K sufficiently different sets of 

initial factor loadings, randomness is added to the PCA loadings for each cluster k: 

 (.25 (1))* 1,...,k PCArand for k K     (21) 

where ‘rand(1)’ indicates a J × Q matrix of random numbers sampled from a uniform 

distribution between 0 and 1, and ‘*’ denotes the elementwise product. Note that the default 

random seed is based on time, such that the added random numbers will be unique for each set 

of starting values (Vermunt & Magidson, 2013). To avoid the occurrence of Heywood cases 

(Rindskopf, 1984; Van Driel, 1978) very early in the model estimation, the initial unique 

variances are generated as follows: 

 ( ) var( )*1.5 1,..., ,k PCAdiag for k K D E  (22) 

where diag(Dk) refers to the diagonal elements of Dk and EPCA is the matrix of PCA residuals. 

Preliminary simulation studies indicated a much lower sensitivity to local maxima and a faster 

computation time when using these starting values instead of mere random values. 
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Appendix 2: Latent Gold 5.1 syntax for MSFA analysis 

options 
   algorithm  
      tolerance=1e-008 emtolerance=1e-006 emiterations=2500  

nriterations=500; 
   startvalues 
      seed=0 sets=25 tolerance=1e-005 iterations=100 PCA; 
   bayes 
      categorical=0 variances=0 latent=0 poisson=0; 
   montecarlo 
      seed=0 replicates=500 tolerance=1e-008; 
   quadrature  nodes=10; 
   missing  excludeall; 
   output       
      iterationdetail classification parameters=effect standarderrors  

probmeans=posterior profile bivariateresiduals  

writeparameters='results_parameters.csv' write='results.csv'  

writeloadings='results_loadings.txt'; 
   outfile 'classif.txt' classification; 
variables 
   groupid V1; 
   dependent V2 continuous, V3 continuous, V4 continuous, V5 continuous, V6  

continuous, V7 continuous, V8 continuous, V9 continuous, V10  

continuous, V11 continuous, V12 continuous, V13 continuous; 
   independent V1 nominal;   
   latent 
      F1 continuous,  
      F2 continuous,  
      F3 continuous, 
      F4 continuous, 
      Cluster nominal group 2 coding=first; 
equations 
// factor variances 
   (1) F1; 
   (1) F2; 
   (1) F3; 
   (1) F4; 
// logistic regression model for clusters: contains only intercept 
   Cluster <- 1; 
// regression models for items: no intercept and loading which vary across 

clusters 
   V2 - V13 <- F1 | Cluster + F2 | Cluster + F3 | Cluster + F4 | Cluster; 
// item variances  
   V2 - V13 | Cluster; 

 

The LG syntax is built up from three sections, i.e., ‘options, ‘variables’, and ‘equations’. 

Firstly, the ‘options’ section pertains to specifications regarding the estimation process and to 

output options. The parameters in the ‘algorithm’ subsection indicate when the algorithm 

should proceed with NR instead of EM iterations and when convergence is reached (see 

Vermunt & Magidson, 2013). The ‘startvalues’ subsection includes the parameters pertaining 

to the multistart procedure (Section A1.2). Specifically, for each set of starting values (the 
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number of sets is specified by ‘sets’), the model is re-estimated for as many iterations as 

specified by ‘iterations’ or until   drops below the ‘tolerance’ value. Then, the multistart 

procedure proceeds as described in Section A1.2. ‘PCA’ prompts LG to use the PCA-based 

starting values, whereas otherwise ‘seed=0’ would give the default random starts (for other 

possible ‘seed’ values, see Vermunt & Magidson, 2013). In the ‘output’ and ‘outfile’ 

subsections, the desired output can be specified by the user (for more details, see Vermunt & 

Magidson, 2013). The parameters of the remaining subsections are not used in this paper. 

Secondly, the ‘variables’ section specifies the different types of variables included in 

the model. Since MSFA operates on multilevel data, after ‘groupid’, the variable in the data file 

that specifies the group structure (i.e., the data block number for each observation) should be 

specified (i.e., ‘V1’), using its label in the data file. In the ‘dependent’ subsection, the dependent 

variables of the model (i.e., the observed variables) should be specified, by means of their label 

in the data file and their measurement scale. Next, the ‘independent’ variables can be specified. 

In the MSFA case, it is useful to include the grouping variable as an independent variable, in 

order to get the cluster memberships per data block rather than per row (i.e., in the ‘probmeans-

posterior’ output tab; Vermunt & Magidson, 2013). Finally, the ‘latent’ variables of the MSFA 

model are the factors (i.e., ‘F1’ to ‘F4’ in the example syntax) and the mixture model clustering 

(i.e., ‘Cluster’). In particular, the former are specified as continuous latent variables, whereas 

the latter is specified as a nominal latent variable at the group level with a specified number of 

categories (i.e., the desired number of clusters). By ‘coding=first’ cluster 1 is (optionally) coded 

as the reference cluster in the logistic regression model for the clustering (explained below). 

For other coding options, see Vermunt and Magidson (2013). 

In the ‘equations’ section, the model equations are listed. First, the factor variances are 

specified and fixed at one. No factor covariances are specified, implying that orthogonal factors 

are estimated. Note that both restrictions apply to each data block, because we do not specify 
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an effect of the grouping variable on the factor (co)variances. Next, a logistic regression model 

for the categorical latent variable ‘Cluster’ is specified (Vermunt & Magidson, 2013), which 

contains only an intercept term in case of MSFA. Specifically, this intercept vector relates to 

the prior probabilities or mixing proportions of the clusters in that it includes the odds ratio’s 

for the K−1 non-reference clusters with respect to the reference cluster, i.e., cluster 1:  

 
1

log .k
kodds





 
  

 

 (23) 

Then, regression models are defined for the observed variables, i.e., which variables are 

regressed on which factors. Note that, for MSFA, all variables are regressed on all factors (i.e., 

it applies EFA) and that no intercept term is included. By default, overall factor means are equal 

to zero and no effect is specified to make them differ between data blocks or clusters. To obtain 

factor loadings that differ between the clusters, ‘| Cluster’ is added to each regression effect. 

Finally, item variances are added, which pertain to the unique variances in this case and which 

are also allowed to differ across clusters. Optionally, at the end of the syntax, additional 

restrictions may be specified or starting values for all parameters may be given, either by 

directly typing them in the syntax or by referring to a text file (see Vermunt & Magidson, 2013). 
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Appendix 3: Latent Gold 5.1 syntax for MSFA simulation 

//LG5.1// 
version = 5.1 
infile 'C:\Users\Documents\...\example.txt' quote = single 

  
model 
options 
   algorithm  
      tolerance=1e-008 emtolerance=1e-008 emiterations=2500 nriterations=0; 
   startvalues 
      seed=0 sets=1 tolerance=1e-005 iterations=50; 
   bayes 
      categorical=1 variances=1 latent=1 poisson=1; 
   montecarlo 
      seed=0 replicates=500 tolerance=1e-008; 
   quadrature  nodes=10; 
   missing  excludeall; 
   output       
      iterationdetail classification parameters=effect standarderrors      

probmeans=posterior profile bivariateresiduals; 
   outfile 'simulateddata.txt' simulation; 
variables 
   caseweight rows; 
   groupid V1; 
   dependent V2 continuous, V3 continuous, V4 continuous, V5 continuous, V6 

continuous, V7 continuous, V8 continuous, V9 continuous, V10 

continuous, V11 continuous, V12 continuous, V13 continuous; 
   independent V1 nominal; 
   independent Cluster nominal; 
   latent 
      F1 continuous,  
      F2 continuous, 
      F3 continuous, 
      F4 continuous; 
equations 
// factor variances 
   (1) F1; 
   (1) F2; 
   (1) F3; 
   (1) F4; 
// regression models for items: no intercept and loading which vary across 

clusters 
   V2 - V13 <- F1 | Cluster + F2 | Cluster + F3 | Cluster + F4 | Cluster; 
// item variances  
   V2 - V13 | Cluster; 
// starting values 
   'startingvalues.txt' 
end model 

 

For generating the simulated data sets by means of LG, syntaxes were used like the one 

shown above. The cluster memberships, the data block sizes (i.e., the number of rows per block, 

factor 2), as well as the number of variables (including a variable to identify the data blocks) 

were communicated to the simulation syntax by means of a text file (Figure A1) which is 
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referred to as the ‘example’ file in the LG manual (Vermunt & Magidson, 2013). The observed 

variables are still to be simulated and can thus take on arbitrary but admissible values in the 

example file; in the current simulation study, random numbers from a standard normal 

distribution were used. The simulation syntax lists a lot of technical parameters in the ‘Options’ 

section. Most of them are discussed in Appendix 2. The ‘outfile simulateddata.txt simulation’ 

option will generate one simulated data set from the population model that is specified further 

on in the syntax, and will save it as a text file. The montecarlo parameters pertain to other types 

of simulation studies and resampling studies (see Vermunt & Magidson, 2013). The MSFA 

population model encompasses a model syntax (see Appendix 2) and ‘starting values’ for all 

free model parameters (i.e., the population-level parameter values that were written into a text 

file, with, per cluster, first the unique variances and then the loadings of the first factor, followed 

by the loadings of the second factor, and so on; see Figure A1). The model syntax determines 

the data block structure of the data to be simulated by the ‘groupid’ and ‘caseweight’ variable. 

An important difference with an analysis is that, when simulating, the clustering is known 

(through the example file) and it is thus defined as an independent variable in the simulation 

syntax model.  

[Insert Figure A1 about here] 

 


