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Abstract

T h r e e - w ay d ata se ts occur w h e n v arious attrib ute s are me asure d for a se t of ob se r v ational units in d iff e r e nt situations. E x ample s are

g e notype b y e nv ironme nt b y attrib ute d ata ob taine d in a plant e x pe rime nt, ind iv id ual b y time point b y re sponse d ata in a long itud inal

stud y, and ind iv id ual b y b rand b y attrib ute d ata in a mark e t r e se arch surv e y. Cluste r ing ob se r v ational units (g e notype s/ind iv id uals)

b y me ans of a spe cial type of th e normal mix ture mod e l h as b e e n propose d . An implicit assumption of th is approach is, h ow e v e r, th at

ob se r v ational units are in th e same cluste r in all situations. An e x te nsion is pre se nte d th at mak e s it possib le to re lax th is assumption

and th at b e cause of th is may yie ld much simple r cluste r ing solutions. T h e propose d e x te nsion— w h ich includ e s th e e arlie r mod e l

as a spe cial case — is ob taine d b y ad apting th e multile v e l late nt class mod e l for cate g orical r e sponse s to th e th r e e - w ay situation, as

w e ll as to th e situation in w h ich r e sponse s includ e continuous v ariab le s. An e ffi cie nt E M alg orith m for parame te r e stimation b y

max imum lik e lih ood is d e scrib e d and tw o e mpirical e x ample s are prov id e d .

© 2006 E lse v ie r B .V . All rig h ts r e se r v e d .
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1 . I n tro d u ctio n

An e x ample of a th r e e - w ay d ata se t is d ata colle cte d in plant e x pe rime nts w h e r e v arious attrib ute s are me asure d on

g e notype s g row n in se v e ral e nv ironme nts. T h is w ould b e a g e notype b y e nv ironme nt b y attrib ute d ata se t. B asford and

M cL ach lan (19 85) propose d a v ariant of th e normal mix ture mod e l for th e analysis of such th r e e - w ay d ata, w h e r e th e aim

is to cluste r g e notype s b y e x plicitly tak ing into account th e information on attrib ute s and e nv ironme nts simultane ously.

T h is is ach ie v e d b y a multiv ariate normal mix ture mod e l w ith cluste r- , e nv ironme nt-, and attrib ute -spe cifi c me ans, and

w ith non-z e ro cluste r-spe cifi c cov ariance s b e tw e e n attrib ute s w ith in e nv ironme nts. M ore r e ce ntly, H unt and B asford

(19 9 9 , 2001) e x te nd e d th e approach to case s w ith cate g orical attrib ute s and w ith not all attrib ute s ob se r v e d on all

g e notype s. M e uld e rs e t al. (2002) propose d a re stricte d late nt class mod e l for th e analysis of th r e e - w ay d ich otomous

attrib ute d ata.

O th e r e x ample s of th r e e - w ay d ata includ e long itud inal d ata on multiple r e sponse v ariab le s— pe rson b y time point b y

re sponse d ata— or d ata from e x pe rime nts in w h ich ind iv id uals prov id e multiple rating s for multiple ob je cts (prod ucts,

b rand s) or r e port on possib le b e h av iors sh ow n in multiple situations, yie ld ing pe rson b y ob je ct b y attrib ute and pe rson

b y situation b y b e h av ior d ata, r e spe ctiv e ly. O th e r e x ample s consist of d ata se ts in w h ich ob je cts are rate d on multiple

attrib ute s b y multiple e x pe rts, such as e x ams w ith multiple q ue stions corre cte d b y multiple rate rs or prod ucts e v aluate d

on multiple attrib ute s b y multiple rate rs. In th e r e maining , I w ill r e f e r to th e th r e e w ays of th e d ata se ts as case s,
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situations, and attributes, respectively. The aim of the application of a mixture model is to cluster cases based on

measured attributes in various situations. Clusters will also be referred to as (latent) classes and groups.

An important characteristic of the Basford and McLachlan (B&M) mixture model for three-way data, as well as of

the other variants mentioned above, is that cases are assumed to belong to the same cluster in all investigated situations.

I propose an alternative mixture model for three-way data that relaxes this assumption: cases may be in a different

latent class depending on the situation or, more specifically, cases are clustered with respect to the probability of being

in a particular latent class at a certain situation. The basic idea is to treat the three ways as hierarchically nested levels

and assume that there is a mixture distribution at each of the two higher levels; i.e., one at the case and one at the

case-in-situation level. The proposed model is an adaptation of the multilevel latent class model by Vermunt (2003) to

continuous responses, as well as to the specific model structures needed for dealing with three-way data. A nice feature

is that it has the B&M three-way mixture model as a special case.

An important advantage of the proposed modelling approach is that it may yield more parsimonious solutions—

solutions with less clusters—with an even better description of the data than the B&M model. Moreover, interpretation

of results may be easier and the model may be more in agreement with reality and thus more meaningful. For example,

in a longitudinal data application it is unrealistic to assume that individuals are in the same latent class at each time

point or in a multiple experts study it is unrealistic to assume that each expert classifies an object in the same latent

class.

Bö hning et al. (2000) proposed a state–space mixture model in which, in fact, two ways (case by time point) are

collapsed into one way. A standard mixture model is subsequently adopted, which implies that observations of the same

case at different time points are assumed to be independent of one another. An advantage of the hierarchical mixture

model described below is that it can take into account dependencies between repeated observations within cases. It

should be noted that the hierarchical mixture model has the state–space mixture model of Bö hning et al. (2000) as a

special case; that is, as the limiting case in which there is only one higher-level mixture component.

The remaining of this article is organized as follows. U sing B&M’s model as the starting point, I first describe the

simplest form of the new model, and subsequently introduce variants such as restricted multivariate normals, models

for categorical and mixed responses, and models with covariates and regression type constraints. Subsequently, I show

how parameter estimation can be performed using a special variant of the EM algorithm which is implemented in the

Latent G OLD mixture modelling software (Vermunt and Magidson, 2005). The new approach is illustrated with two

empirical examples.

2. Mixture models for three-way data

2.1. Basford and McLachlan’s mixture model

Following a similar notation as in McLachlan and P eel (2000, p. 114) and Hunt and Basford (2001), suppose that

the responses on P attributes were recorded in N cases, each of which was observed in R situations. Let yir be a P × 1

vector containing the values of the P attributes of case i in situation r, for i = 1, . . . , N ; r = 1, . . . , R. The RP × 1

observation vector yi is given by

yi =
(

y′

i1, . . . , y′

iR

)′
,

where yi contains the multi-attribute responses of the ith case in all R situations. U nder the mixture model proposed

by Basford and McLachlan (1985), it is assumed that cases belong to one of K possible groups or latent classes

G1, . . . , GK in proportions �1, . . . , �K , respectively, where
∑

�k = 1 and �k �0 for k = 1, . . . , K . The responses

of case i in situation r have a multivariate normal distribution conditional on group Gk; i.e., yir ∼ N (µkr , �k). The

mixture model for three-way data proposed by Basford and McLachlan (1985) has the following form:

f (yi) =

K
∑

k=1

�k

R
∏

r=1

fk

(

yir ; µkr , �k

)

. (1)

N ote that the values of the within-class covariance matrices are constant across situations, whereas the class-specific

attribute means differ across situations. An important assumption is that conditional on the class membership of case

i the responses in the different situations are independent of one another. It is, however, impossible to relax that



Aut
ho

r's
   

pe
rs

on
al

   
co

py

5370 J.K. Vermunt / Computational Statistics & Data Analysis 51 (2007) 5368–5376

assumption because too many covariances would have to be estimated in a more general model with free covariances

across situations.

Another important assumption of the B&M model is that cases are in the same latent class in each of the investigated

situations. The more extended model described in the next subsection relaxes this assumption.

2.2. The hierarchical mixture model

As under the model described in Eq. (1), under the hierarchical mixture model for three-way data, it is assumed that

cases belong to one of K possible groups G1, . . . , GK in proportions �1, . . . , �K , respectively, where
∑

�k = 1 and

�k �0 for k = 1, . . . , K . A new element is that conditional on belonging to Gk , in situation r cases are assumed to

belong to one of L groups H1, . . . , HL in proportions �1|k, . . . , �L|k , respectively, where
∑

��|k = 1 and ��|k �0 for

� = 1, . . . , L and k = 1, . . . , K , which yields a two-layer structure similar to the model proposed by Li (2005). The

responses in situation r have a multivariate normal distribution conditional on group H�, i.e., yir ∼ N
(

µ�r , ��

)

. As in

the B&M model, the within-class covariance matrix �� is constant across situations, whereas the class-specific means

differ across situations. The hierarchical mixture model has the following form:

f (yi) =

K
∑

k=1

�k

R
∏

r=1

L
∑

�=1

��|k f�

(

yir ; µ�r , ��

)

. (2)

It should be noted that this model is equivalent to the B&M model described in Eq. (1) if L=K and if ��|k is restricted

to be equal to 1 for � = k and to 0 for � �= k; that is, if cases belong to the same class in each situation. This shows that

the hierarchical model extends the standard model by allowing cases to be in a different latent class per situation with a

certain probability. Higher-level mixture components differ with respect to these prior class membership probabilities,

which is captured by the K (L − 1) extra model parameters ��|k .

The model described in Eq. (2) is similar to the multilevel latent class model proposed by Vermunt (2003). An

important difference is that this was a model for categorical rather than continuous responses, as well as that it could

not deal with parameters that differ across situations. In one particular aspect the multilevel latent class model is more

general than the model presented here; namely, in that the number of lower-level units may differ across higher-level

units or, translated into the three-way terminology, that there is no need that all cases have been observed in the same

(number of) situations.

In terms of structure the proposed model is also similar to hierarchical mixtures-of-experts models (Jordan and

Jacobs, 1994; Vermunt and Magidson, 2003). An important difference is that the hierarchical mixtures-of-experts

architecture is not used with three-way but with standard two-way data sets. Other differences are that in these models

the parameters of the component distributions may also depend on Gk and that explanatory variables may enter in the

various model parts. But as is shown below, similar types of extensions can be defined for the model proposed in this

article.

The model described in Eq. (2) also shares some similarities with the hierarchical latent class model proposed by

Z hang (2004) for the exploratory analysis of data sets with large numbers of response variables. This is a model for

two-way data sets that allows for a hierarchy of latent variables with as many levels as needed to get a good description

of the data set at hand. The EM algorithm used by Z hang is similar to the one presented in the next section.

2.3. Variants and extensions of the hierarchical model

Various variants and extensions of the above model can be defined. For instance, a more parsimonious variant is

obtained by assuming that the class-specific means do not vary across situations, which involves replacing µ�r by

µ�. The fact that means were allowed to differ across situations was in fact specific to the type of application for

which Basford and McLachlan (1985) developed their model. In other applications, it may be more natural to assume

homogeneity across situations; for example, in longitudinal data applications, we will most likely not wish to allow

class-specific means to differ across time points.

An intermediate variant in terms of parsimony is obtained by defining an analysis-of-variance type of linear model

for µ�r , with main effects for class and situation but without an interaction effect: µ�r = �0 + �H
� + �S

r , where H

stands for latent class and S for situation. W hat we are saying here is that means are situation specific, but the way
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responses vary across situations is the same for all classes, a simplifying assumption that seems to make sense in many

application types.

In a regression model for the class-specific means, we could also include other case- and situation-specific predictors.

We could even include attribute-specific predictors, yielding a mixture regression model structure (Wedel and DeSarbo,

1994). Finally, the means could also be allowed to depend on Gk—the case-level classes.

Not only can the class-specific means be further restricted, but also the covariance matrices. Interesting constraints

are homogeneity across classes, diagonal covariance matrices, and lower-dimensional representations using factor-

analytic structures. In fact, all the restricted covariance structures that have been proposed for standard multivariate

normal mixture models (see, e.g., McLachlan and Peel, 2000; Vermunt and Magidson, 2002) can be applied within the

context of the proposed hierarchical mixture model for three-way data.

R ather than assuming that the attribute means depend on situation, we could also allow the probability of belonging

to group H� given membership of group Gk to depend on situation, which involves replacing ��|k by ��|kr . As for the

means, to eliminate interaction terms, these probabilities could be restricted by means of a regression model, in this case

by a multinomial logistic regression model containing only the main effects for case-level classes Gk and situations.

In this regression model we could also include other case- and situation-specific predictors. Also the probability of

belonging to group Gk can be allowed to depend on (case-specific) covariates. Note that the use of covariates yields

models which are similar to the concomitant variable latent class model by Dayton and Macready (1988).

The last variant I would like to mention is relevant when there are categorical or mixed responses. As in standard

mixture models, for categorical responses, we will typically use multinomial (Goodman, 1974) or Poisson (Böhning

et al., 2000; Knorr-Held and R aß er, 2000) within-class distributions. Taking the more general case in which the class-

specific densities can take on other forms than multivariate normal, the three-way mixture model is formulated as

follows:

f (yi) =

K
∑

k=1

�k

R
∏

r=1

L
∑

�=1

��|k f� (yir ; ��r) ,

where f� (yir ; ��r) is the density for situation r conditional on class H�, and ��r is the vector of unknown parameters

defining this density. In the case of local independence, we will in addition assume that

f� (yir ; ��r) =

P
∏

p=1

f�

(

yirp; ��ps

)

;

that is, that the multi-attribute density can be obtained as a product of the univariate densities corresponding to the

P attributes. A special case of the multilevel latent class model proposed by Vermunt (2003) is obtained when the

P responses can be assumed to come from locally independent multinomial distributions, an example of which is

presented below.

3 . P arameter estimation by the E M alg orithm

Let zi = (zi1, . . . , ziK)′, for i = 1, . . . , N , be a vector of indicator variables, where zik equals 1 if case i belongs to

group Gk and 0 otherwise, and let wir = (wir1, . . . , wirL)′, for i = 1, . . . , N and r = 1, . . . , R, be another vector of

indicator variables, where wir� equals 1 if case i belongs to group H� in situation r and 0 otherwise. The zi are assumed

to come from a multinomial distribution with parameters �k , and, conditionally on the zi , the wir are assumed to come

from a multinomial distribution with parameters ��|k .

By treating these indicator variables as missing or unobserved, parameter estimation by maximum likelihood can

be solved by means of the EM algorithm (Dempster et al., 1977). Because of the extremely high dimensionality of the

missing data problem, in the implementation of the E step I use a similar trick as in the Baum–Welch algorithm for

hidden Markov modelling (Baum et al., 1970). It should be noted that the model defined in Eq. (2) contains 1 + R

unobserved variables with a total of K × LR categories. This implies, for example, that with R = 8 and K = L = 4,

we are dealing with a model with 262,144 entries in the joint distribution of the variables with missing values. It

will be clear that this cannot be solved with a standard EM algorithm. In the graphical or Bayesian belief network

modelling field, the hierarchical mixture model would be recognized as a single-connected network or polytree, for
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which relevant marginal conditional probabilities can be obtained by propagation algorithms (Pearl, 1988). Both the

forward–backward algorithm for hidden Markov models and the upward–downward algorithm discussed below are

propagation algorithms.

Rather than repeating all the well-known details on the EM algorithm for the estimation of normal mixture models

which can be found in, for example, McLachlan and Peel (2000), I will concentrate on the specific aspects associated

with the estimation of the hierarchical mixture model described in Eq. (2). The complete data log-likelihood function

for this model has the following form:

log LC(�) =

N∑

i=1

K∑

k=1

zik log �k +

N∑

i=1

K∑

k=1

R∑

r=1

L∑

�=1

zikwir� log ��|k

+

N∑

i=1

K∑

k=1

R∑

r=1

L∑

�=1

zikwir� log f�

(
yir ; µ�r , ��

)
, (3)

where � refers to the full set of unknown model parameters. Calculation of the expected value of the complete data

log-likelihood—which is the E step of the EM algorithm—involves replacing the indicator variables zik and wir� by

their expected values ẑik =P (zik = 1|yi; �) and ŵir�|k =P (wir� = 1|yi, zik = 1; �), which are the estimated posterior

probabilities that case i belongs to class Gk and that it belongs to class H� when it is in situation r given Gk , conditional

on the observed data and the current parameter estimates. Note that ẑikŵir�|k = P (zik = 1, wir� = 1|yi; �), which is

the expected value of the product term zikwir� appearing in Eq. (3).

Crucial in the implementation of the E step of the algorithm is that one can make use of the fact that lower-level

(case-in-situation) observations are independent of one another given the higher-level (case) class memberships. More

specifically, we make use of the fact that

ŵir�|k = P (wir� = 1|yi, zik = 1; �) = P (wir� = 1|yir , zik = 1; �) ;

that is, that given class membership of the case (zik), class membership in a certain situation (wir�) is independent of

the observed data at the other situations.

In order to simplify the formulas for ẑik and ŵir�|k , let hir�|k = ��|k f�(yir ; µ�r , ��) and gir|k=
∑L

�=1hir�|k. The

relevant terms are obtained as follows:

ŵir�|k =
��|k f�

(
yir ; µ�r , ��

)
∑L

�=1��|k f�

(
yir ; µ�r , ��

) =
hir�|k

gir|k

,

ẑik =
�k

∏R
r=1 gir|k∑K

k=1�k

∏R
r=1 gir|k

.

As can be seen, for each case i, we first compute hir�|k for each k, r, and � combination and collapse these over � to

obtain gir|k , which amounts to marginalizing over the lower-level cluster variables. Combining the gir|k for all r gives

the posterior for the higher-level cluster variable. Analogous to the forward–backward recursion algorithm, Vermunt

(2003) refers to this step as the upward step because information from the lower nodes of the tree is passed to the upper

node. The downward step involves the computation of the bivariate joint posterior of zik and wir�, the term that enters

in the expected complete data log-likelihood; that is,

P (zik = 1, wir� = 1|yi; �) = ẑikŵir�|k .

The M step of the EM algorithm proceeds similarly as described by Basford and McLachlan (1985); i.e.,

�̂k =

∑N
i=1̂zik∑N

i=1

∑K
k=1̂zik

,

�̂�|k =

∑N
i=1

∑R
r=1̂zikŵir�|k∑N

i=1

∑R
r=1

∑L
�=1̂zikŵir�|k

,
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µ̂�r =

∑N
i=1

∑K
k=1̂zikŵir�|kyir∑N

i=1

∑K
k=1̂zikŵir�|k

,

�̂� =

∑N
i=1

∑K
k=1

∑R
r=1̂zikŵir�|k

[(
yir − µ̂�r

) (
yir − µ̂�r

)′
]

∑N
i=1

∑K
k=1

∑R
r=1̂zikŵir�|k

.

These M step equations can easily be adapted to other distributions such as Poisson or multinomial distributions for

discrete response variables.

The special variant of the EM algorithm described above has been implemented in version 4.0 of the Latent GOLD

software package for latent class and mixture modelling (Vermunt and Magidson, 2005). Although not all specific

structures for the class-specific means and covariance matrices that one may need for three-way data are in the current

program, the new version will contain all relevant options.

An important issue in mixture modelling is identifiability (McLachlan and Peel, 2000, pp. 26–28). Apart from

the label switching problem, as in standard mixture models, it is not straightforward to provide general conditions

for identifiability. It can, however, easily be observed that the model described in Eq. (2) is, in fact, built up by two

submodels: a latent class like model for the higher-level latent classes in which the R lower-level class memberships serve

as categorical “ response” variables, and a standard mixture model for the lower-level classes. A necessary condition for

identification is that the upper part of the model has the structure of an identifiable latent class model. This requires, for

example, that the number of situations should be at least three (R�3) (Goodman, 1974). If the upper part is identifiable,

(separate) identifiability of the lower part is a sufficient condition but not always necessary when K > 1. An example is

the case in which the lower part is a standard latent class model for 2 response variables (P =2). Whereas such model is

not identified for K = 1, it is for K > 1 (of course, assuming that R�3). This discussion shows that in the more typical

applications, such as in the ones discussed below, identifiability is not more problematic for the hierarchical mixture

model than for the standard mixture model. In practice, as I did in the examples presented below, one can check local

identifiability by determining the rank of Jacobian (Goodman, 1974; Formann, 1992).

4 . T wo emp irical examp les

4 .1. Soybean data

I will illustrate the new mixture model for three-way data using two empirical applications. The first one is a reanalysis

of the classical soybean data used by Basford and McLachlan (1985) and McLachlan and Basford (1988) to illustrate

their three-way normal mixture model. I obtained the data set from Pieter Kroonenberg’s website on three-way data

analysis: http://three-mode.leidenuniv.nl/. The data originate from an experiment in which 58 soybean genotypes were

evaluated at four locations in Q ueensland, Australia, at two time points, the eight combinations of which will be denoted

as environments. Various attributes were measured on the genotypes. The two continuous attributes I used are “ yield”

and “ protein percentage” .

I estimated multivariate mixture models of the forms (1) and (2) for K and L values ranging from 1 to 4. Note that

for K = 1 the model of Eq. (2) reduces to a standard mixture that treats the observations of the same genotype at

different environments as independent observations. Because combinations of L = 1 with K > 1 are not meaningful,

these are omitted from the table. In the estimated models, the class- and environment-specific means were restricted

by an ANOVA-like structure: µ�r = �0 + �H
� + �E

r , where E refers to environment.

The encountered BIC values are reported in Table 1, where for the computation of BIC, I used 58, the number

of genotypes, as the sample size. Conclusions would have been the same if model selection would have been based

on AIC instead of BIC. As can be seen, for this data set, the B&M three-way mixture model performs much better

than the hierarchical mixture model, which indicates that the assumption that genotypes are in the same class at each

environment holds. Not surprisingly, in the hierarchical mixture models with K = L the estimated values for the ��|k

parameters were always close to 1 for k = � and close to 0 otherwise, the values at which these parameters are fixed in

B&M model.

To investigate whether this somewhat unexpected result is connected to this particular data set or whether it is an

artifact of applying the proposed model with continuous response variables, I simulated 10 data sets with the same

structure as the Soybean data set (N = 58, R = 8, and P = 2) using the estimated µ and � values of the model with
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K = 3 and L = 3 as population values. I assumed �k = 1
3 for each k, and ��|k = 0.8 for � = k and ��|k = 0.1 otherwise.

The latter parameter values were very well recovered: across the 10 replications, I found an average estimate of 0.774

for the diagonal ��|k . The fact that no single diagonal element was larger than 0.93 shows that boundary estimates are

unlikely if such a model holds.

4.2. Anger data

The second application uses data from a psychological experiment described by Meulders et al. (2002) to illustrate

another type of latent class model for three-way data. This data set is available at: http://www.statisticalinnovations.com/.

It consists of the answers of 101 first-year psychology students who indicated whether or not they would show each of

eight behaviors when angry at someone for six different situations. The eight behaviors consist of four pairs of reactions

refl ecting a particular way of dealing with anger: fighting [(1) fl y off the handle, (2) quarrel] , fl eeing [(3) leave, (4)

avoid], emotional sharing [(5) pour out one’s heart, (6) tell one’s story], and making up [(7) make up, (8) clear up the

matter]. The six situations are whether one (1) likes, (2) dislikes or (3) is unfamiliar with the instigator of anger and

whether the instigator has a (4) higher, (5) lower, or (6) equal status.

Because the reported behaviors come in four strongly overlapping pairs, it is not realistic to assume that the eight

responses are locally independent (Goodman, 1974). Therefore, we allowed for local dependencies—or direct effects

in the terminology of Hagenaars (1988)—between pairs of behaviors connected with the same way of dealing with

anger. More specifically, the joint distribution for a pair of 0/1 items—say the pair formed by yir1 and yir2—within

situations conditional on membership of group H� is multinomial: (yir1, yir2) ∼ Mult
(
�00�r , �10�r , �01�r , �11�r

)
. As

in the B&M model, we allow responses to depend on situation, with constant effects across latent classes. This can

be achieved by defining a logistic regression model for the item responses similar to the linear logistic latent class

model by Formann (1992). The model for the log odds of the (yir1 = s, yir2 = t) (for s = 0, 1 and t = 0, 1) versus the

(yir1 = 0, yir2 = 0) joint response is

logit �st�r =

(
�01 + �H

�1 + �S
r1

)s

+

(
�02 + �H

�2 + �S
r2

)t

+
(
�012

)st
.

The substantive interpretation of this specification is that certain reactions are more likely to occur in certain situations

than in others, but that—on the logit scale—the amount by which the likelihood changes is equal across classes. The

parameter �012 captures the within-cluster association between these two items.

Table 2 reports the BIC values obtained for the estimated models with the Anger data set. In the computation of BIC,

I used 101, the number of students, as the sample size. Conclusions would have been the same if model selection would

have been based on AIC instead of BIC. As can be seen, models that allow class membership to vary across situations

Table 1

BIC values for model estimated with the Soybean data set

K = 1 K = 2 K = 3 K = 4 B&L

L = 1 3014 – – – 3014

L = 2 2999 2761 2768 2776 2752

L = 3 2996 2751 2690 2700 2665

L = 4 3004 2755 2698 2667 2618

Table 2

BIC values for models estimated with the Anger data set

K = 1 K = 2 K = 3 K = 4 B&M

L = 1 5257 – – – 5257

L = 2 5119 5114 5118 5127 5217

L = 3 5127 5115 5117 5129 5209

L = 4 5142 5121 5111 5125 5208
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Table 3

Estimated values for the �k and ��|k parameters obtained with the model with K = 3 and L = 4

G1 G2 G3

�k 0.65 0.23 0.12

H1 0.71 0.02 0.06

H2 0.20 0.11 0.68

H3 0.10 0.45 0.00

H4 0.00 0.42 0.26

Table 4

Estimated values for the (marginal) class-specific response probabilities obtained with the model with K = 3 and L = 4

H1 H2 H3 H4

Y1 0.39 0.02 0.80 0.29

Y2 0.20 0.10 0.99 0.35

Y3 0.16 0.92 0.00 0.39

Y4 0.28 0.94 0.04 0.44

Y5 0.58 0.56 0.58 0.42

Y6 0.57 0.51 0.64 0.99

Y7 0.46 0.30 0.55 0.36

Y8 0.42 0.19 0.54 0.46

perform much better than the B&M specification with fixed class memberships. The model with the lowest BIC is the

model with K = 3 and L = 4. Tables 3 and 4 report the parameter estimates obtained with this model.

The numbers in Table 3 show that G1—the largest class containing 65% of the cases—shows reaction type H1 in

most situations, but sometimes also types H2 or H3. The second group selects types H3 or H4 in most situations, and

class G3 has preference for H2, but may also select H4. What these numbers indicate is that selecting a type of reaction

given Gk is clearly a stochastic process and not deterministic as is assumed in the B&M three-way mixture model.

Table 4 provides the required information for labelling the types of reactions that one selects when angry at someone.

Note that these are average response probabilities across situations and levels of the other variable in the locally

dependent pair. Reaction types H2 and H3 are easiest to label; namely, fleeing and fighting. Classes H1 and H4 are

similar, with the exception that the latter has a much higher probability for the second emotional sharing item and is

also somewhat more likely to report the fleeing behaviors (Y3 and Y4). As far as the making up (Y7 and Y8) items is

concerned, we do not see large differences across classes, except that class H2 has somewhat lower probabilities for

these reactions.

5. Discussion

A novel mixture clustering model was presented for the analysis of three-way data sets. The method—which is

based on treating the three-way data as hierarchical data—is a variant of the multilevel latent class model proposed by

Vermunt (2003). The proposed model is an extension of the model by Basford and McLachlan (1985) in the sense that

it allows to relax the assumption that class membership does not change across situations.

The hierarchical model was illustrated by two empirical examples. In the first application for two continuous re-

sponse variables, it did not perform better than the simpler B&M three-way mixture model, which indicates that

the assumption of fixed class membership across situations holds for this data set. The contribution of the new ap-

proach was that it provided a test for the assumption of the B&M model. In the second application, the hierarchical

mixture model performed much better than the B&M model. Even after taking into account that the situation may

itself affect the responses, it was clearly not correct to assume that students use the same type of reaction for each

situation.

In the section describing the hierarchical mixture model for three-way data sets, I already mentioned various pos-

sible variants and extensions of the proposed model, some of which were used in the two applications. I also dis-

cussed the connection to other types of mixture models, such as the hierarchical-mixtures-of-experts model and the
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multilevel latent class model. However, I did not mention the connection to the grade-of-membership (GoM) model

(Erosheva, 2004; Manton et al., 1994), which is sometimes referred to as the partial- or mixed-membership model. This

is a not so well-known variant of the latent class model in which, as in the model proposed here, cases are allowed to

belong to each of the latent classes with a certain probability or, in GoM terminology, cases have a certain GoM for

each class. The difference between the GoM and the hierarchical mixture model are that in the former each case is as-

sumed to have a unique set of membership probabilities coming from a particular distribution—for example, a Dirichlet

distribution—whereas in the latter it is assumed that cases can be clustered based on their memberships probabilities.

Actually, our approach can be seen as a nonparametric variant of the GoM model, provided that one either increases

K up to a saturation point (Böhning, 2000; Lindsay, 1995) or assumes that the nonparametric maximum likelihood

estimate of the mixing distribution has exactly K mass points according to some penalized likelihood criterion such as

BIC (Keribin, 2000).
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