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Objective: To illustrate how fluctuation patterns in ambulatory assessment data with features such as few categorical items, mea-
surement error, and heterogeneity in the change pattern can adequately be analyzed with mixture latent Markov models. The
identification of fluctuation patterns can be of great value to psychosomatic research concerned with dysfunctional behavior or
cognitions, such as addictive behavior or noncompliance. In our application, unobserved subgroups of individuals who differ with
regard to their mood regulation processes, such as mood maintenance and mood repair, are identified. Methods: In an ambulatory
assessment study, mood ratings were collected 56 times during 1 week from 164 students. The pleasant-unpleasant mood dimension
was assessed by the two ordered categorical items unwell-well and bad-good. Mixture latent Markov models with different number
of states, classes, and degrees of invariance were tested, and the best model according to information criteria was interpreted.
Results: Two latent classes that differed in their mood regulation pattern during the day were identified. Mean classification
probabilities were high (>0.88) for this model. The larger class showed a tendency to stay in and return to a moderately pleasant mood
state, whereas the smaller class was more likely to move to a very pleasant mood state and to stay there with a higher probability.
Conclusions: Mixture latent Markov models are suitable to obtain information about interindividual differences in stability and
change in ambulatory assessment data. Identified mood regulation patterns can serve as reference for typical mood fluctuation
in healthy young adults. Key words: ambulatory assessment, experience sampling method, mood regulation, latent class analysis,

hierarchical latent Markov model, mixture distribution.

AA = ambulatory assessment; MLM = mixture latent Markov;
MMQ = Multidimensional Mood Questionnaire; BIC = Bayesian
Information Criterion; AIC3 = modified Akaike Information Criterion.

INTRODUCTION

ffective states (e.g., pleasant-unpleasant mood, calm-tense

mood), body states (e.g., blood pressure, sleep quality),
cognitions (e.g., appraisals, self-esteem), and behaviors (e.g.,
treatment compliance, drinking behavior) typically fluctuate
over time. Importantly, individuals may differ in the specific
pattern of fluctuations they show (e.g., slow versus fast tran-
sitions between states), and these individual differences are
of key interest to psychosomatic research. For instance, in
health psychology, one might be interested in the patterns
of instability of a specific type of health behavior, or in psy-
chiatry, one might be interested in specific patterns of self-
destructive behavior over time.

A way to explore these patterns and to gain insight into their
circumstances is the repeated measurement of individuals’
affective states, body states, cognitions, and behaviors via
ambulatory assessment (AA). Ambulatory assessment studies
provide intensive longitudinal data (e.g., several measurements
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a day across a period of 2 weeks) that permit researchers to
analyze individual differences in patterns of change and sta-
bility (1). There are several statistical approaches appropriate
for analyzing intensive longitudinal data. A summary of their
main strengths and limitations can be found in Table 1 (2—11).
Of particular importance to the selection of a statistical ap-
proach is the type of variable that is to be analyzed. In AA
studies, states and behaviors of interest are often categorical
in nature (e.g., compliant versus noncompliant behavior) or
are assessed by only few items with a categorical response
format (e.g., very bad mood, rather bad mood, rather good
mood, very good mood). The key aim of this article was to
explain and illustrate one particular approach to the analysis
of intensive longitudinal data that is appropriate for categorical
observed and categorical latent variables and that is able to
separate variability due to occasion-specific influences from
variability due to measurement error: mixture latent Markov
(MLM) models (12). Originally, latent Markov models were
developed for the analysis of panel data (13). Until recently,
the application of MLM models required very large sample
sizes and was restricted to few measurement occasions.
Methodological developments by Vermunt and colleagues (12)
make it now possible to apply these models to the analysis
of interindividual differences in intraindividual fluctuations
in intensive longitudinal studies. Previous applications based
on the new approach include models with 23 measurement
occasions, but models for much longer time series can be dealt
with. Dias and colleagues (14) applied these methods to fi-
nancial time series consisting of almost 2000 time points
(days). In this article, we will show how MLM models can be
applied to AA data with many measurement occasions of many
individuals. We will use the models to test hypotheses about
the existence of subgroups differing in their pattern of mood
fluctuations over time, which can be conceptualized as indicat-
ing different mood regulation competencies. These differences
can have important consequences for subjective well-being
and psychological health. Many forms of psychopathology (e.g.,
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TABLE 1. Methodological Approaches to the Analysis of Ambulatory Assessment Data

Type of Data Analysis Advantages

Limitations Application

Time series analysis, frequency
domain analysis (2,3)

— Large number of occasions
— Single-case estimates
— Weekly or daily cycles

— Structure of observed
variables can be tested

Dynamic factor analysis (6)

— Complex relations
between variables

— Many individuals
and occasions

Multilevel analysis (8,9)

— Many different types
of change processes
— Intraindividual and
interindividual differences
— Latent variables free
of measurement error

Structural equation
modeling (11)
— Unbiased estimates
of stability and variability

— Few individuals, no

— Measurement error not

— Few individuals, no

— Measurement error not

— Usually restricted to

— Effects of daily stress on
interindividual differences well-being (4)
— Mood change frequency (5)

considered

— Continuous outcomes

— Daily emotions after a romantic

interindividual differences breakup (7)

— Continuous outcomes

— Intraindividual variability in positive

considered and negative affect (10)

— Measurement

invariance assumed

— Mobile phone assessment of mood

continuous outcomes in daily life (11)

— No qualitative differences

in change

depression, phobias) may arise from, and be maintained by, un-
successfully implemented mood regulation (15).

The remainder of this section is organized as follows. First,
we consider mood and mood regulation processes and review
empirical findings on individual differences in mood regula-
tion competencies. Second, we present the properties of the
MLM model and demonstrate how the model can be applied
to assess mood regulation patterns by AA data.

Mood and Mood Regulation

Mood states are diffuse and unfocused affective states which
shape the background of our moment-to-moment experience
(16,17). Structural models of mood assume that mood states
can be described by a few dimensions (e.g., Schimmack and
Grob (18)). The three-dimensional model of mood (19,20), for
instance, includes wakefulness-tiredness, relaxation-tension, and
pleasant-unpleasant mood as basic dimensions. In our applica-
tion, we will focus on the pleasant-unpleasant dimension of
mood.

Mood has both a stable and a variable aspect; that is, indi-
viduals have a characteristic (habitual) level of mood (also
called set point), and their momentary mood fluctuates around
this set point (15). Research has demonstrated that individuals
differ both in their set point of mood and in their pattern of
mood fluctuations (e.g., Eid and Diener (21) and Eid et al.
(22)). This pattern of fluctuation is partly due to mood regu-
lation behavior (15,17). Research has demonstrated that indi-
viduals differ considerably in their ability to effectively improve
a negative mood or maintain a positive mood (23-25).

To date, most research on mood regulation competencies
has attempted to measure stable individual differences in neg-
ative mood repair and positive mood maintenance by self-report
questionnaires (26-28). As an alternative, AA allows us to
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measure mood regulation competencies indirectly by drawing
on information of individuals’ mood course over a longer
period. Mixture latent Markov models are well suited to in-
vestigate interindividual differences in the intraindividual
course of mood as an indirect measure of mood regulation
because these models take into account that the fluctuation
process might differ between individuals and might depend
on the specific state that is maintained or modified. For ex-
ample, the information that over time, individuals have a high
probability of changing their mood state has to be judged
differently if this refers to a negative mood state or to a pos-
itive mood state.

Aim of the Study

The aim of the present work was to show how MLM models
could be used to assess interindividual differences in mood
regulation. We expected to find several latent classes of indi-
viduals who differ in their fluctuation pattern. According to
current theories of mood regulation, we expected classes that
differ in their ability to maintain their positive mood and to
repair their negative mood. Classes with high mood mainte-
nance should show a high probability to stay in a pleasant
mood state. Classes with high mood repair should show a high
probability to leave an unpleasant mood state.

The Mixture Latent Markov Model

In Markov models, stability and change are represented
by transition probabilities, which describe the probabilities
of staying in the same category over time or moving to another
response category. The transition probabilities are estimated
based on a set of measurement occasions. Applied to mood
measurement, the model estimates the overall probability
of being in a certain mood state given the state at the previous
time point.
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The MLM model is an extension of the simple Markov
model and the latent Markov model. The simple Markov model
describes relations among categories at different points in time
in a so-called Markov chain. Only two kinds of parameters
are needed to describe this process: the initial probabilities
Prob(Responsey), which contain information about the size
of each category at the very first time point; and the transition
probabilities Prob(Response, | Response,—;), which indicate
the probability of a category given a certain previous category.
In the Markov model with time-homogeneous transition
probabilities, it is assumed that the transition probabilities
are constant across different time points (time-homogeneous
or stationary). To illustrate this point with a simple example,
the probability of switching from a positive to a negative mood
state between Time Point 1 and Time Point 2 (e.g., from morn-
ing to noon) is the same as between Time Point 2 and Time
Point 3 (e.g., from noon to afternoon). The general structure
of a simple Markov model with time-homogeneous transi-
tion probabilities for two observed categories is depicted in
Figure 1. Here, the coefficient 7, is the probability to stay in
the first category, 7,, is the probability to stay in the second
category, T, is the probability to move from the first to the
second category, and T,; is the probability to move from the
second to the first category. In other words, the transition
probabilities between the same category at different time points
(711 and 7,) describe stability. The ones between different
categories (71, and 7,;) contain information about change.

The assumption of time-homogeneous transition probabilities
can be tested by comparing a model with time-homogeneous
transition probabilities with a model assuming time-heterogeneous
transition probabilities. One should keep in mind that time-
homogeneous transitions are only sensible if the time points are
equidistant. Assuming the same influence on a current state by
a state 1 hour ago or a state 5 hours ago is very restrictive. We
will return to this point in the discussion. Another notable as-
sumption in this model is the fact that a first-order Markov
process is assumed. This means that the probability of a state
someone is in on a certain occasion depends only on the previ-
ous occasion (and not, for example, on the occasion before that).

A disadvantage of simple Markov models is that it is unclear
whether change is due to measurement error or to true change

Time 1 Time 2 Time 3
T T
Category 1 1 1
T12 T12
T21 T21
T T
Category 2 22 22

Figure 1. Simple Markov chain for a manifest response variable with two cat-
egories and three occasions of measurement. 7; is the transition probability
from category i to j. Depicted is a time-homogeneous Markov process, because
7;; are independent of the specific time point.

368

C. CRAYEN et al.

processes. Because most measures in psychological and clin-
ical research are afflicted with measurement error, some of the
observed change between categories may be attributable to
measurement error instead of reflecting true change. To sepa-
rate measurement error from true change, latent Markov
models have been developed.

Latent Markov models are multiple indicator extensions
of simple Markov models. At each measurement occasion,
at least two indicators are linked to a “true” latent state variable
by state-specific response probabilities. In the latent Markov
model, the Markov process takes place on the level of error-
free latent categories (categorical latent state variables). Be-
cause the observed (manifest) indicators have to be linked
to the latent state, the latent Markov model contains an addi-
tional type of parameter: the conditional response probabilities
Prob(Response, | State,). They describe how likely an observed
category is, given a certain latent state at the same point in time.
Even if, for example, someone is in a pleasant mood state, he
or she might not respond with the according category / feel
well. This would be reflected in a response probability Prob
(Response, = well | State, = pleasant) lower than 1. Whenever
an observed category is linked to a corresponding latent cat-
egory indicating the same state, deviations of the response
probabilities from 1 indicate the influence of measurement
error, and the response probabilities indicate reliability. There
are as many response probabilities as combinations of ob-
served categories and latent states. Whether these response
probabilities are constant over time or not is a question of
whether it is the same construct that is measured over time
(29,30). In AA studies, time lags are usually too short to as-
sume that the meaning of the latent states or the properties of
the measurement instrument changes over time. Nevertheless,
the assumption of measurement invariance has to be tested.

The latent Markov model assumes that all individuals show
the same fluctuation pattern. If distinct subgroups are ob-
served, for example, via a patient/control group variable,
a multigroup model with a chain for each group could be
considered and differences in parameters between the chains
could be formally tested. However, the groups that differ in
their fluctuation pattern are often not identifiable by means
of observed variables. To identify unobserved subgroups
in latent Markov processes, MLM models have been defined.
In MLM models, each subpopulation (latent chain or latent
class) of individuals is characterized by a latent Markov model
(31). The aim of the analysis is to detect the number of latent
chains (classes) that differ in their parameters (initial state
probabilities, response probabilities, and state transition proba-
bilities (32,33)). As additional parameters, the MLM model
contains the probabilities of belonging to a particular latent
class Prob(Class), which is also referred to as the size of the
class. All other parameters are conditional on the latent class
membership in the MLM model.

The MLM model can be extended by including covariates
(12). These covariates can be either time constant, such as
measures of stable personality traits or sex, or time varying,
such as situational factors collected via AA (e.g., events,
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physiological measures). Covariates can be used to predict
the different types of parameters in the model, for example,
the transition probabilities. Individuals might be more likely
to move to a more pleasant mood state in social situations
compared with nonsocial situations. The effect of covariates
could also differ between latent classes of individuals.

An attribute of AA data that requires special attention is
the nesting of measurement occasions in days and the de-
pendency between days. Not only is the time lag between the
last signal at night and the first signal in the morning much
longer than the time lags within the day, but the processes that
operate at night might also be different. These transitions on
different levels can be accounted for by treating the mea-
surement occasions as nested within days. Such a hierarchical
model was suggested by Rijmen and colleagues (34) in their
application of MLM models to AA data. They reported re-
sults for a study with 32 female patients and 63 signals during
the course of a week, assessing emotional states. The structure
of such a hierarchical MLM model is depicted in Figure 2. In
our illustrated example, there are two subgroups or latent day
classes and three latent states for each measurement occasion.
Two Markov processes are operating, one on each level: On
the lower within-day level, transitions between latent states
occur only during the day but not across days. On the upper
between-day level of latent day classes, transitions between
latent classes occur only across days but not during the day.
The latent day classes for each day are obtained by separating
individuals who differ in their pattern of fluctuations between
latent states over the day.

In a simplified example, there may be two classes on each
day: one with individuals who had a bad day (high initial
probability and high stability of unpleasant mood state) and
one with individuals who had a good day (high initial proba-

Day 1
A

1
Day Classes

2]

bility and high stability of pleasant mood state). Because of

the transition between days on the upper level of the latent

classes, a person can have a good day after a bad day and vice
versa, independent of the person’s last state on the previous
night.

To sum up, the hierarchical MLM model contains the fol-
lowing parameters (disregarding covariates):

1. Prob(Classy) is the initial class probability, that is, the probability
of belonging to a particular class at d = 0 (e.g., the first day of
assessment; circled “A” in Fig. 2).

. Prob(Class, | Class,—1) is the latent transition probability of being
in a certain latent class given the latent class on the previous day
(circled “B” in Fig. 2).

. Prob(State,q | Class,) is the initial state probability on the begin-
ning of each day that depends on the latent class of the same day
(circled “C” in Fig. 2).

. Prob(State,, | State,,—;, Class,) is the latent transition probability
on the latent state level, that is, the probability of being in a certain
state given the previous state and the class on that day (circled “D”
in Fig. 2).

. Prob(Response;; | Statey, Class,) is the response probability for
the observed categories of indicator j, given the latent state on that
particular time point and the latent class on that day (not depicted
in Fig. 2).

APPLICATION

The data analyzed here are a subset of data from a larger
study on mood regulation processes that combined a laboratory
session with a 14-day AA period. In the laboratory session,
various personality variables were assessed via self-report.
During the AA period, the focal construct of momentary mood
was measured, as well as a number of additional variables. In
this application, we will use data of the first week of the AA
period only.

C | State 1 || State 2 ” State 3 | | State 1 || State 2 || State 3 | | State 1 || State 2 || State 3 |
Occ 1 @ @ @ Occ 1 @ @ @ Occ 1 @ @ @
D

Occ 2 @ @ @ Occ 2 @ @ @ Occ 2 @ @ @
I\\\ PR ’//I I\\\ PARS ’r/l I\\\ 1IN ’//I
AN AL Xl 0N L2 AN AN A
1 NS o< . 1 1 PN < s 1 1 SR TP N 1
S S S S S P S
VN NN PN I VO N PN TGN
w” e S - S S = S 2

Oce T @ @ @ Occ T @ @ @ Occ T @ @ @

Figure 2. A hierarchical mixture latent Markov model with three latent states and two latent day classes. The measurement part of the model has been omitted.
Occ = occasion within a day; D = number of days; 7 = number of occasions. Parameters denoted by gray-shaded letters are referred to in the text: A = initial day
class probabilities; B = day class transition probabilities; C = initial state probabilities; D = state transition probabilities.
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Participants

A total of 165 participants were recruited from the Freie
Universitdt Berlin via a notice posted on campus. Criteria for
inclusion were student status in a subject other than psychology
and German as a native tongue. Data from one participant
were excluded from the analyses because this person’s average
mood level across the AA period was exceptionally low (=5 SD).
The final sample consisted of 164 students (88 women) with
an M (SD) age of 23.7 (3.31) years (min = 18 years, max = 35
years). Students received 80 EUR in exchange for their partic-
ipation, and an additional 20 EUR if at least 80% of the field
signals were answered.

Procedure

Initial laboratory sessions were done in groups of one to six.
Participants gave informed consent and completed a computer-
based questionnaire assessing several personality dimensions.
After the computer-based part, participants were given detailed
instructions in the use of the handheld device and the ambu-
latory questionnaire. The AA period started for all participants
on the Wednesday after the laboratory session, which was ei-
ther the next or the next but 1 day. Data collection took place
between late October 2009 and early May 2010, covering
mostly the winter half year.

During the first week of the AA period, momentary mood
was assessed eight times per day using signal-contingent time
sampling. Participants were requested to respond on handheld
devices (HP iPAQ rx 1950 Pocket PCs) when signaled by an
alarm (software: Izybuilder, IzyData Ltd., Fribourg, Switzerland).
The signal sounded pseudo-randomly within a 13-hour period
during the day. Participants were able to choose the period ac-
cording to their waking hours. The delay between adjacent sig-
nals could vary between 60 and 180 minutes' (M [SD] = 100.24
[20.36] minutes, min = 62 minutes, max = 173 minutes). Re-
sponses had to be made within a 30-minute time window after
the signal on the touch screen of the device using a stylus. If
participants failed to respond within the 30-minute time win-
dow, the session was counted as missing. On average, the
164 participants responded to 51 (of 56) signals (M [SD] =
51.07 [6.05] signals, min = 19 signals, max = 56 signals). In
total, there were 8374 nonmissing measurement occasions in
the present analysis.

Measures

Momentary Mood

At each measurement occasion during the AA period, par-
ticipants rated their momentary mood on an adapted short
version of the Multidimensional Mood Questionnaire (MMQ)
(20,35). Instead of the original monopolar mood items, a
shorter bipolar version was used to fit the need for brief scales
in an AA study (36). Several studies (20,35) have shown that
the items belonging to the same scale of the MMQ but different

"Two signals that violated this rule owing to device malfunctioning were
excluded from the analysis.
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poles are strongly negatively correlated when momentary
mood is assessed, resulting in a common factor. Hence,
building bipolar items on the basis of monopolar items of
the same scale of the MMQ is acceptable. Four items assessed
pleasant-unpleasant mood (happy-unhappy, content-discontent,
good-bad, and well-unwell). Participants rated how they mo-
mentarily feel on a 4-point bipolar intensity scales (e.g., very
unhappy, rather unhappy, rather happy, very happy). For the
current analysis, we focused on the items well-unwell and
good-bad to keep the model simple. Preliminary analysis of
the response category frequencies showed that the lowest cat-
egory (i.e., very bad and very unwell) was only chosen in ap-
proximately 1% of all occasions. We therefore decided to
collapse the two lower categories together into one unwell and
bad category, respectively. The following analyses are based
on the recoded items with three categories.

Trait Mood Regulation

In the laboratory session, participants completed an 11-item
scale measuring perceived effectiveness in mood regulation
(37). Six items assessed negative mood repair (e.g., “It is easy
for me to improve my bad mood”) and five items assessed
positive mood maintenance (e.g., “It is easy for me to maintain
my good mood for a long time”). The items were answered on
4-point frequency scales (ranging from almost never to almost
always).

Data Analysis

Software

To estimate MLM models with many occasions and feasible
sample sizes, the special forward-backward EM algorithm as
described by Vermunt and colleagues (12) has to be integrated
in the software. For all analyses, the Latent GOLD 4.5 software
package (38) was used. Syntax for Latent GOLD and the
corresponding code for the R system (39,40) to run WinBUGS
(41) is provided in the online appendix (Supplemental Digital
Content 1, http:/links.Iww.com/PSYMED/A42). Rijmen and
colleagues (34) provided the according functions for the Matlab
environment. Functions that are able to estimate similar models
in the R system may be found in the depmixS4 package (42).

Determining the Number of Latent States and Classes

Following a bottom-up strategy, we started building models
for each of the 7 days separately to see which combination
of number of latent states and number of latent classes would
fit the observed data best. We expected the number of latent
states to mirror the three observed states (i.e., item categories).
Alternative models with two and four latent states were tested
in addition. The number of latent states can deviate from the
number of observed categories if the observed variables vary
in their difficulties (43). The number of latent classes in the
models we tested ranged from 1 to 4. The best fitting model was
selected according to information criteria (44,45). Other fit
statistics that rely on the x? distribution are not applicable here
because of sparse contingency tables (46). This problem occurs
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TABLE 2. Fit Measures for the Estimated Models

Model LL BIC AIC3 Npar

A. Unrestricted baseline —10,080 20,930 20,613 151
model

B. Response probabilities -10,097 20,902 20,610 139
restricted

C. State transition probabilities —10,151 20,643 20,502 67
restricted

D. Initial state probabilities —10,163 20,546 20,456 43
restricted

E. Class transition probabilities —10,166 20,500 20,430 33
restricted

F. No class transition allowed —-10,188 20,535 20,470 31

G. Model E + covariates -10,152 20,483 20,410 35

LL = log-likelihood; BIC = Bayesian Information Criterion based on
log-likelihood; 7, = number of parameters.

because, with many categories and time points, many combi-
nations of the categories of the observed variables that would
theoretically be possible do not appear in the data when the
sample size is not extremely large. The distribution of fit sta-
tistics is no longer known and cannot be used for calculating
valid p values. Information criteria depend on the fit of the
model as well as its complexity. According to information
criteria, the best-fitting model is the simplest model showing
an adequate fit. This model can be found by comparing the
information criteria of different models and selecting the
model with the smallest value of the information criterion
considered. There are many different information criteria that
differ in how model complexity is penalized. For latent class
models, the Bayesian Information Criterion (BIC) (47) has
been shown to perform well (48,49). For the special case of
MLM models, there is some evidence (50) suggesting the
use of the modified Akaike Information Criterion (AIC3) (51).

Testing Invariance

Next, we combined the single-day models into a model
of the first week. Days were linked by a transition between
latent classes at the beginning of the day.> We proceeded in
several steps to test parameter invariance across days, starting
from a baseline model, in which all parameters (class- and
state-dependent response probabilities, state transition proba-
bilities, initial state probabilities at the beginning of the day,
and transition probabilities between classes) were allowed
to differ between days. Subsequently, we imposed equality con-
straints across days on the response probabilities (Model B),
the latent state transition probabilities (Model C), the initial
state probabilities (Model D), and the day class transition prob-
abilities (Model E). Finally, we analyzed a model without tran-

2We tested whether an additional link allowing the last mood state of a day
to influence the first state of the following day would improve the model, but it
did not.
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sitions between day classes (probabilities to stay in the same
class constrained to 1; Model F).

RESULTS

The results for the single-day models showed that, in general,
a model with three latent states and two latent classes can be
adopted for each day. Transition probabilities were assumed to be
time-invariant during the course of a day, and response proba-
bilities were allowed to differ between latent classes. The single-
day models were combined into a single 7-day model. The BIC,
the AIC3, and the number of parameters for each 7-day model
tested are reported in Table 2. Because both information cri-
teria were in agreement in our application, from here on, we
will only refer to the AIC3. In the baseline model (Model A),
all parameters (class- and state-dependent response probabil-
ities, state transition probabilities, initial state probabilities at
the beginning of the day, and transition probabilities between
classes) were allowed to differ between days. It should be noted
that this baseline model was not completely unrestrictive.
Some equality assumptions had to be made to secure model
identification. Model identification refers to the situation where
it is possible to obtain unique estimates for all free parameters
in the model (see Langeheine and Van de Pol (52), where iden-
tification of latent Markov models is discussed). One restriction
in the baseline model concerned the response probabilities. They
were restricted to be equal across measurement occasions within
the same day and the same class in all models.

Next, we tested equality constraints. In Model B, we tested
whether the measurement part of the model, the link between
latent states and observed response categories, remained stable
across days. We restricted the response probabilities to be equal
across days (but not classes). Model B had a lower AIC3 than
Model A did, implying that equal response probabilities could
be assumed. The mood states did not change their meaning
across days, but they were slightly different for the two classes.
Next, the same procedure was applied to test homogeneity
across days concerning the state transition probabilities. Model
C contained these restrictions and yielded a lower AIC3 than
Model B. In the following step, initial state probabilities were

TABLE 3. Estimated Conditional Response Probabilities in Model E

Item ““Well” Item ““Good"’
Rather  Very Rather Very
Unwell Well Well Bad Good Good

Class 1
State 1 0.90 0.10 0.00 0.93 0.07 0.00
State 2 0.05 0.94 0.02 0.02 0.96 0.01
State 3 0.00 0.39 0.61 0.00 0.48 0.52

Class 2
State 1 0.72 0.25 0.03 0.64 0.34 0.02
State 2 0.01 0.93 0.05 0.00 0.91 0.09

State 3 0.00 0.16 0.84 0.00 0.11 0.89

Probabilities may not add up to one due to rounding error.
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restricted to be equal across all days. The obtained Model D
showed an even lower AIC3 than Model C did. The class
transitions between days were set equal in Model E. Again,
this restriction led to a lower AIC3. Because the stability of
the classes was very high (the probability of staying in the
same class across days was larger than 0.9), we tested whether
it was necessary to even let people change classes between days
or whether these classes could be seen as trait classes rather
than day-specific classes linked by a Markov process. Com-
pared with Model E with equal class transitions, Model F with
no class transition allowed (the probabilities to stay in the
same class were restricted to 1) had to be rejected based on a
higher AIC3. We therefore kept Model E as our final model,
which is described in more detail in the next paragraph.

In Model E, the mean classification probabilities were high
for the latent states (0.94, 0.92, and 0.88) and the latent classes
(0.96 and 0.93), showing that this model yielded a reliable
classification of individuals. Mean classification probabilities
were calculated in the following way. First, for each individual,
the classification probabilities to belong to the different classes
and states were calculated based on his or her response vector.
Then, an individual was assigned to the latent state on each
occasion and the latent class on each day for which his or her
classification probability is maximum. Then, the mean of the
assignment probabilities of all individuals belonging to the
same class and state were calculated. The closer the mean
probabilities are to 1, the better is the classification of indivi-
duals. From the perspective of psychological assessment, the
classification of individuals to different types of mood regu-
lation is a very important task. The high mean classification
probabilities show that this assessment could be reliably done
based on the model selected.

Two latent classes that differed with respect to their within-
day mood fluctuation patterns were identified. These two classes
characterize the pattern of mood change within a single day.
The transition probabilities did not differ between days but
individuals were allowed to change classes between days. We
named the larger of the two classes as Class 1 and the smaller
one as Class 2. The size of Class 1 was 0.68 on the first day
of our AA week and remained very stable across days (the
probability to stay in this class between 2 days was 0.98).
Accordingly, the smaller Class 2 had a size of 0.32 and was
a little less stable (the probability to stay in this class between
2 days was 0.90). To determine the character of a class, it was
crucial to first characterize the latent states in the class by
looking at the response probabilities for the two different items
well and good. For Model E, these can be found in Table 3.

Latent mood State 1 of Class 1 was characterized by a high
probability of choosing the observed categories unwell (0.90)
and bad (0.93), respectively. This state could be interpreted as
“unpleasant mood.” On the other hand, latent mood State 2
in Class 1 was associated with a very high probability of
choosing the observed categories rather well (0.94) and rather
good (0.96). We labeled this state “rather pleasant mood.” For
the last latent mood State 3 in Class 1, the probabilities of
choosing the observed categories very well (0.61) and very
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good (0.52) were not as high. There was still a considerable
probability of choosing the middle categories rather well
(0.39) and rather good (0.48). This means that individuals
in this state were in a mood that is somewhat between a rather
pleasant and a very pleasant mood. Because the probabilities
were highest for the last item categories, we labeled this state
“very pleasant mood.”

Class 2 differed from Class 1 in the response probabilities
given the latent states. In latent mood State 1, individuals
in Class 2 had a lower probability of responding with the lowest
observed categories unwell (0.72) and bad (0.64) than indivi-
duals in Class 1. Instead, there was a tendency toward the
middle categories rather well (0.25) and rather good (0.34).

Class 1
Initial State — 1 State
1 2 3
.07 1 .53 44 .03
.75 2 .09 .82 .10
.18 3 .05 43 .52
Class 2
Initial State — 1 State
1 2 3
.14 1 .33 43 .24
47 2 .14 57 .29
.39 3 .05 21 .74

Figure 3. Estimated initial state probabilities and state transition probabilities
in Model E. The upper part of the figure gives the estimates in Class 1, and the
lower part of the figure gives the estimates for Class 2. The first column
provides the initial probabilities for each state. For example, a member of
Class 1 has a 75% chance of starting in State 2. The numbers and shaded
circular areas in the grid represent the transition probabilities from the former
state (State — 1, rows) to the current state (State, columns). For example, the
probability for members of Class 1 to stay in State 2 is 0.82. Probabilities may
not add up to 1 due to rounding error.
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Compared with the “unpleasant mood” state in Class 1, this
latent State 1 in Class 2 was between an unpleasant and a rather
pleasant mood. Because the probabilities were highest for the
first item categories, we named this state “unpleasant mood.”
Latent State 2 was very similar to the “rather pleasant mood”
state in Class 1 and characterized by a very high probability of
choosing the middle categories rather well (0.93) and rather
good (0.91). In latent State 3, individuals in Class 2 had a
clearly higher probability of choosing the highest observed
categories very well (0.84) and very good (0.89) than individ-
uals in Class 1. Keeping this difference in mind, this state in
Class 2 was also labeled “very pleasant mood.” In Class 2, the
latent mood states seemed to reflect a higher basic mood level.

The initial state probabilities and state transition probabil-
ities are depicted in Figure 3. In Class 1, the initial probability
for the rather pleasant mood state was by far the highest (0.75).
Looking at the transition probabilities, this mood state was
very stable (0.82). The probabilities of changing one’s rather
pleasant mood state for the better (0.10) or the worse (0.09)
were equally low. In this class, there was a high probability
to start in a rather pleasant mood in the morning and to stay
in this rather pleasant mood over the day. By comparison, the
unpleasant and very pleasant mood states showed lower sta-
bilities (0.53 and 0.52), and there was a tendency toward
returning to the rather pleasant mood state. In sum, the rather
pleasant mood state prevailed in Class 1.

We found a different pattern looking at Class 2. Here,
people started off in a very pleasant mood (0.39) almost as
often as in a rather pleasant mood (0.47). This class was more
likely to remain in a very pleasant mood state (0.74) than to
decline from there. In mood regulation terms, this number
quantifies the extent of positive mood maintenance. Also,
compared with Class 1, Class 2 had a higher probability of
entering the very pleasant mood state (0.24 and 0.29) coming
from one of the other two mood states that were not as stable.
Negative mood repair (the transition probabilities of moving
to a better mood state if in an unpleasant mood state) added up
to 0.67 compared with 0.47 in Class 1. Overall, this class had
a higher mean mood level and showed a pattern of regulation
toward an elevated mood state. This pattern may very well be
representative for people who are exceptionally skilled in
regulating their mood. They are highly able to repair their
negative mood and to maintain their positive mood.

To further test this interpretation of mood regulation pat-
terns, we included measures from the laboratory session as
time-constant covariates into the model. Specifically, we regres-
sed the class proportions on the first day on self-reported mood
repair and mood maintenance by means of a binary logistic
regression model (Model G in Table 2). Class 1 served as
the reference category. The positive and significant regression
weights for both predictors, mood repair (b = 1.02; standard
error [SE] = 0.43, p = .017) and mood maintenance (b = 1.36;
SE = 0.44, p = .002), reflect that individuals with high self-
reported mood regulation competencies were much more likely
to start in the class with the very positive regulation pattern
than in the moderately positive class.

Psychosomatic Medicine 74:366-376 (2012)

DISCUSSION

In our empirical application, the MLM model allowed a
reliable classification of individuals to different classes of
mood fluctuation patterns. Moreover, it also allowed a reliable
assignment to latent mood states within a day. We will review
the substantive findings first and conclude with prospects of
the modeling approach.

Individual Differences in Mood Regulation

The results revealed that there were only two classes (or
patterns) of mood fluctuations in our sample. We found a class
with pronounced abilities to repair negative and maintain
positive mood and a class that was very stable in a moderately
positive mood state. Individuals in this class were somewhat
able to repair their negative mood and to maintain their very
positive mood, and there seemed to be a high ability to main-
tain a moderately positive mood. These classes appeared to be
distinct both in their habitual mood level (or set point) and
their fluctuation pattern. The smaller class with the higher
habitual mood level exhibited a higher rate of overall fluctua-
tion. This fluctuation was mainly a result of the improvement of
mood states. Whether these mood fluctuations were due to
mood regulation behavior or other influences (rhythmic pro-
cesses due to biologic and social factors, activities and situa-
tions, positive and negative daily events) cannot be answered
by the present analysis. We are able to see that people were
successful in regulating their mood, but we do not know how
they achieved this. Investigating this question would require
incorporating information about the situation or on individ-
uals’ regulation behavior into the analysis. Ways in which the
presented model can be extended to include this type of in-
formation are discussed below. An indication that mood reg-
ulation competencies do play a role in these different patterns
comes from the self-reported trait measures of mood regula-
tion. Higher reported competency is linked to the class with
the higher habitual mood level. With this interpretation, one
should keep in mind that individuals were allowed to change
classes between days. Even if the assignment to the classes
was very stable across days, there remains a day-to-day vari-
ation that cannot be accounted for by trait measures. It would
be interesting to determine conditions of this day-to-day vari-
ability in future research.

It is also of interest that there was no class of individuals
with a very high probability of staying in an unpleasant mood
state (i.e., with low mood repair competence). This might be
because we have analyzed a sample from a nonclinical popu-
lation. In a clinical population, one might expect different
classes, for example, a class with high probability to stay in
a negative mood (depression) or a class characterized by un-
usual high variability of mood (borderline personality disor-
der). Depending on the symptoms considered, many other
classes are conceivable. The classes we found may serve future
clinical studies as an example of standard regulation patterns.

In addition, the results provide some insight into the rela-
tionship between the two mood regulation abilities under

373

Copyright © 2012 by the American Psychosomatic Society. Unauthorized reproduction of this article is prohibited.



consideration: positive mood maintenance and negative mood
repair. The fact that we did not find a class in which only one
ability was present but not the other shows that they do not
seem to occur independently from each other. One reason may
lie in the concurrent acquisition of these competencies or in
regulation strategies that can be valuable for positive mood
maintenance as well as negative mood repair (e.g., social shar-
ing). Mixture latent Markov models allow analyzing mood
regulation in an indirect way on the basis of repeated mea-
surements. This has many advantages over the more traditional
way of assessing mood regulation competencies by self-report
questionnaires. The results might be less distorted by memory
effects and are representative for individuals’ daily life. Never-
theless, our results also demonstrate the convergent validity of
our assessment method with traditional questionnaires because
the mood regulation questionnaires predicted class membership.

The MLM Model

There are at least three ways in which the MLM model
applied here can be extended. First, the model can be modified
to allow for between-day differences in the number and
structure of the latent classes. In the application presented, we
found homogeneous structures across the different days.
However, this might not be the case for other constructs.

Second, time-varying covariates could be included. Mood
fluctuations depend not only on mood regulation but also on
situational influences. Time-varying covariates characterize
the situations in which individuals are and could be used to
investigate whether the latent classes differ in the way they
react to these situational influences. There might be classes of
individuals with high resilience that do not react strongly to
negative events but also classes that might be very reactive to
situational influences (53). Mixture latent Markov models
could be applied to measure resilience in an indirect way by
separating latent subgroups that differ in the way situational
factors influence behavior and feelings. If covariates are in-
cluded, parameters are accordingly conditioned on the set of
covariates. Hence, the meaning of the parameters can change
when covariates are included. In which way the meaning of
the parameter changes depends on the specific model consid-
ered. If covariates are observed variables, this does usually not
affect the identifiability of the model parameters. However,
if the covariates are latent variables, measurement models have
to be specified for them as well.

Finally, we have assumed in our application that the tran-
sition probabilities between two states are the same for all
individuals within a class. However, individuals might differ
in the time lag between two occasions of measurement. If the
time lag varies between individuals, the assumption of ho-
mogeneous transition probabilities might be inappropriate.
The probability to stay in the same state might be higher for
shorter time lags than for longer time lags. Although there
were individual differences in time lags in our study, the in-
traindividual distributions of the time lags were homogeneous.
Therefore, the model seems to be appropriate in our applica-
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tion. If there are large interindividual differences in time lags,
the model has to consider these differences. A way to ade-
quately include interindividually varying time lags in MLM
models is suggested by Vermunt (54). Another option in this
case would be to employ continuous time Markov models (55)
that do not assume equal or at least similarly spaced mea-
surements within and between individuals, as opposed to dis-
crete time Markov models (like the MLM model we applied
here).

From a more general point of view, the application illus-
trates some properties of the model that are attractive for AA
studies. In contrast to more traditionally used models for an-
alyzing AA data such as classic multilevel analyses, the model
has three major advantages. First, it separates change due
to measurement error from true change. Second, it allows
single categories (states) to differ in the process of change. The
degree of state-specific stability and change can easily be
modeled with MLM models, whereas it is much harder to
model state-specific change processes with other statistical
approaches. Third, the model permits population heterogeneity
with respect to the change process. In contrast to multiple
group analysis, the subpopulations do not have to be known
but are rather a result of the analyses.

Recommendations

When is it appropriate and beneficial to employ MLM
models? First of all, the data at hand should show character-
istics that are suitable for Markov processes: Is it sensible to
assume qualitatively distinct states (categories) for each mea-
surement occasion? Can the switching process among these
categories considered to be autoregressive? If this is the case,
one can start to think in greater detail about the model. If
the occasions exhibit a nested structure that is likely to affect
the change process, it has to be accounted for. In our applica-
tion, measurement occasions were nested in days, and we
found the hierarchical approach to provide a suitable solution.
If the measures used are likely to contain measurement error,
researchers should include at least two indicators of the same
construct so that a measurement model for the latent state can
be included. With this information, a latent Markov model that
adequately reflects the basic structure of the data can be
constructed.

The next step involves determining the number of latent
states and latent classes, often the core question in such an
analysis. The number of latent states is often expected to reflect
the number of observed categories. As mentioned before,
this number may increase if the observed variables vary in
their difficulties, thereby capturing in-between states. Deter-
mining the number of latent classes may well be the hardest
part, because as of yet, statistical fit criteria that ought to guide
this decision are not well scrutinized. Theoretical considera-
tions should be involved: How many classes can be expected?
Do the classes of a particular solution make sense? Can the
classes be separated well, as indicated by high mean classifi-
cation probabilities? In the context of AA studies, one might

Psychosomatic Medicine 74:366-376 (2012)
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even expect differences in the number or profile of the latent
classes between, for example, weekdays and the weekend.
In this case, one has to exercise reasonable care in arranging
the data according to weekdays for all individuals in the study.
Once one has decided on the number of latent states and
latent classes, one can go about to test specific assumptions,
such as a homogeneous change process, by comparing models
with different restrictions. In an additional step, one could in-
clude time-constant and/or time-varying covariates to gain in-
sight into factors influencing the identified fluctuation patterns.

The authors thank Martin Schultze for his help in preparing the
figures.
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