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Introduction 

Food manufacturers need to understand the taste preferences of their consumers in or-
der to develop successful new products.  The existence of consumer segments that differ 
in systematic ways in their taste preferences can have important implications for product 
development.  Rather than developing a product to please all potential consumers, the 
manufacturer may decide to optimize the product for the most important segment (per-
haps the largest or most profitable).  Alternatively, the manufacturer may opt for develop-
ing a number of products with different sensory profiles, each satisfying at least one of 
the segments. 

 
In latent class (LC) regression models (Wedel and Kamakura, 1998), segments are 

comprised of people who have similar regression coefficients.  These models can be of 
particular utility to food developers who need to relate a segment’s product preferences to 
the underlying sensory attributes (taste, texture, etc.) of the products.  By including sen-
sory attributes as predictors, LC regression models promise to identify the segments and 
their sensory drivers in one step and provide highly actionable results. A problem with 
the application of LC regression analysis to this type of rating data sets is that the solu-
tions tend be dominated by the overall liking (or the respondents’ response tendency) 
rather than that one captures differences in the liking of the presented products. In other 
words, latent classes tend to differ much more with respect to the intercept of the regres-
sion model than with respect to slopes corresponding to the product attributes.  

 
This paper illustrates an elegant way to overcome this problem. More specifically, we 

illustrate that the inclusion of a random intercept in a LC ordinal regression model is a 
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good way to separate an overall response level effect from differences in relative prefer-
ences for one cracker over another. As such, it provides a model-based alternative to 
within-case ‘centering’ of the data, which is the common practice. The use of a random 
intercept in regression model is very common in multilevel analysis (Goldstein, 1995; 
Snijders and Bosker, 1999) of which also variants for ordinal data have been proposed 
(Hedeker and Gibbons, 1996). Similar hybrid models combining latent classes and ran-
dom effects have been proposed by Lenk and DeSarbo (2000) and Vermunt (2006). 

 
Below we first introduce the substantive research question of interest and the data set at 

hand. Then, we present the extended LC ordinal regression model that we used for our 
analyses as well as specific the results obtained with the cracker data set. We end with a 
general discussion of the proposed approach. 

Description of the cracker case study 

In this case study, consumers (N=157) rated their liking of 15 crackers on a nine-point 
liking scale that ranged from “Dislike Extremely” to “Like Extremely.” Consumers tasted 
the crackers over the course of three sessions, conducted on separate days.  The serving 
order of the crackers was balanced to account for the effects of day, serving position, and 
carry-over.   

 
An independent trained sensory panel (N=8) evaluated the same crackers in terms of 

their sensory attributes (e.g. saltiness, crispness, thickness, etc.).  The panel rated the 
crackers on 18 flavor, 20 texture, and 14 appearance attributes, using a 15-point intensity 
scale ranging from “low” to “high.”  These attribute ratings were subsequently reduced 
using principal component analysis to four appearance, four flavor, and four texture fac-
tors.  The factors are referred to generically as APP1-4, FLAV1-4, and TEX1-4.  

 
The data layout required for these analyses is shown in Figure 1.  In this layout, there 

are 15 rows (records) per respondent.  The consumer overall liking ratings of the products 
are contained in the column labeled “Rating”, the sensory attribute information in the 
succeeding columns. 

 
As described in more details below, LC regression models were estimated with and 

without a random intercept to account for individual differences in average liking across 
all products. In Latent GOLD 4.0 (Vermunt and Magidson, 2005a) -- the program that 
was used to estimate the models -- a random intercept model is specified as continuous 
latent factor (C-Factor). Inclusion of such a random intercept is expected to result in 
segments that represent relative as opposed to absolute differences in cracker liking.  

 



 

 

 

 
 

 
 
 
 

Figure 1.  Data Layout for the Regression Models 

The LC ordinal regression model with a random intercept 

Let Yit denote the rating of respondent i of product t, with i = 1, 2,…, 157, t = 1, 2,…, 
15. The rating Yit takes on discrete values which are denoted by m; m=1, 2,…, 9. Since 
the rating is not a continuous but a discrete response variable, we work with an ordinal 
logit model or, more specifically, with an adjacent-category logit model (Agresti, 2002). 
As far as the explanatory variables in the model is concerned, we use two different speci-
fications: in one model the ratings are assumed to depend on the products (modeled by 14 
independent product effects) and in the other model the ratings are assumed to depend on 
12 product characteristics. More specifically, we have: 

 
• Model 1: a LC ordinal regression model with a random intercept and product effects 

that vary across latent classes 
• Model 2: a LC ordinal regression model with a random intercept and product-

attribute effects that vary across latent classes 
 

Model 1 used the nominal variable PRODUCT as the sole predictor.  It included a ran-
dom intercept to capture respondent differences in average liking across all products, and 
latent classes as a nominal factor to define the segments in terms of the heterogeneity in 
this PRODUCT effect. The model of interest has the following form: 
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As can be seen, this is a regression model for the logit associated with giving rating m in-
stead of m-1 for cracker t conditional on membership of latent class x, for x = 1,2,…, K. 
In this model, imα  is the intercept, which, as can been seen from its indices, is allowed to 
vary across individuals. The specific parameterization we used is imim Fλαα += , where 
Fi is a normally distributed continuous factor (the C-Factor score for the ith respondent), 
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which has a mean equal to 0 and a variance equal to 1, and where λ  is a factor loading. 
The implication of this parameterization is that expected value of the intercept 

mimE αα =)(  and its variance 2)( λα =imVar . So, both the expectation and the square root 
of the variance are model parameters. More details on the factor-analytic parameteriza-
tion of random effects models can, for example, be found in Skrondal and Rabe-Hesketh 
(2004) and Vermunt and Magidson (2005b). 
 

The xtβ  parameter appearing in the above equation is the effect of the tth product for la-
tent class or segment x. Effect coding is used for parameter identification, which implies 
that the mα  parameters sum to zero over the 9 possible ratings and that the xtβ  sum to 
zero over the 15 product. Because of the effect coding, a positive value for xtβ  means 
that segment x likes that product more than average, and a negative value that it likes the 
product concerned less than average. 

 
Model 2 is the same as Model 1, except that it used the 12 sensory attributes as predic-

tors. This yields the following LC regression model: 
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Here, tqz  denotes the value for attributes q for product t, and xqβ  is the effect of the qth 
attribute for latent class x. The remaining part of the model specification identical to 
Model 1.  
 

Latent GOLD 4.0 estimates the LC ordinal logit model with random effects using 
maximum likelihood (ML), where the integral associated with the continuous factor Fi is 
solved by the Gauss-Hermite numerical integration procedure (Stroud and Secrest, 1966). 
In the current application, we used the Latent GOLD default setting of 10 quadrature 
nodes. To find the ML solution, Latent GOLD makes use of a combination of the EM and 
Newton-Raphson algorithms. More specifically, the program starts with a number of EM 
iteration and when close enough to the maximum it switches to the faster Newton-
Raphson method. Lenk and DeSarbo (2000) proposed using Bayesian estimation methods 
for finite mixture models of generalized linear models with random effects of which the 
models described above are special cases 



Results obtained with the cracker data set 

Model 1  

The correlation of the random intercept Fi with respondents’ average liking across all 
cracker products was almost perfect (> 0.99).  This shows that including the random in-
tercept in the model is similar to ‘centering’, where the average liking rating is subtracted 
from the individual’s ratings. The advantage of adjusting for the average rating through 
the use of a random intercept is that the original ordinal rating metric is preserved, so that 
the distributional assumptions made by the restricted multinomial likelihood function re-
main appropriate. A two-class solution provided the best fit to the data, with a model R2 
of 0.39. 

 
Figure 2 shows the average product liking scores for the two segments.  Segment 2 

liked products #495, #376, #821, and #967 more than Segment 1, but liked #812, #342, 
#603 less.  Liking when averaged across all products was nearly identical for the two 
segments (5.9 and 6.1 for Segments 1 and 2, respectively). 

 
 

 

 

 

 
 
 
 
 
 
 

Fig. 2. Model 1 (2 classes) Results 

Model 2   

The correlation of the random intercept with average liking across products was again 
almost perfect (>0.99). The BIC was lower for an unrestricted two-class model 
(BIC=9,535) than for an unrestricted three-class model (BIC=9,560), indicating that the 
two-class model was preferred.  However, a three-class restricted model that restricted 
the third class regression coefficients to zero for all 12 predictors had a slightly lower 
BIC (9,531) than the two-class model.  The model R2 for the three-class restricted regres-
sion model was 0.39, the same as for Model 1 (which used the nominal PRODUCT vari-
able as the predictor). 
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The interpretation of the third class is that it consists of individuals whose liking does 

not depend on the levels of the 12 sensory attributes. This segment was small (8%), com-
pared to the size of the other two segments (42% and 50% for Segments 1 and 2, respec-
tively).   

 
Figure 3 shows the average product liking scores for the three-class restricted model.  

The plot of regression coefficients in Figure 4 provides a visual display of the extent of 
the segment differences in attribute preferences. Segment 2 prefers products high in 
APP2 and low in APP3. Segment 1 was not highly influenced by these two characteris-
tics, but preferred crackers high in APP1.  Both clusters agree that they prefer crackers 
that are high in FLAV1-3, low in FLAV4, low in TEX1 and high in TEX2-3.       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Model 2 (3 classes) Results 
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Fig. 4. Regression Coefficients for Model 2 (3 classes) 
 

General discussion 

Both Models 1 and 2 provided clear evidence of the existence of segment differences 
in consumers’ liking ratings.  While some products appealed to everybody, other products 
appealed much more to one segment than another. 

 
The correlation of the random intercept was in excess of 0.99 for both LC Regression 

models, which shows that including a random intercept is conceptually similar to mean-
centering each respondents’ liking ratings.   

 
A LC Cluster analysis of the mean-centered liking data would yield similar results to 

those obtained with LC Regression Model 1.  However, there are three reasons to prefer 
the regression approach in general.  As mentioned above, with the regression approach, it 
is possible to maintain the ordinal discrete metric of the liking data.  Subtracting an indi-
vidual’s mean from each response distorts the original discrete distribution by transform-
ing it into a continuous scale that has a very complicated distribution.  Secondly, in stud-
ies where a respondent only evaluates a subset of products, mean-centering is not 
appropriate since it ignores the incomplete structure of the data.  Thus, the regression ap-
proach provides an attractive model-based alternative for removing the response level ef-
fect, also in the case that of missing data or unbalanced designs. Third, the regression ap-
proach allows inclusion of multiple predictors, as was illustrated here in Model 2. 

 
Replacing the nominal PRODUCT predictor with the twelve quantitative appearance, 

flavor and texture attributes made it possible to relate liking directly to these attributes.  
This allowed for the identification of both positive and negative drivers of liking.  Seg-
ments reacted similarly to the variations in flavor and texture, but differed with regard to 
how they reacted to the products’ appearance.  Based on such insights, product develop-
ers can proceed to optimize products for each of the identified segments. 

 
Replacing the nominal PRODUCT variable with the sensory predictors did not lead to 

any substantial loss in model fit.  The R2 for Model 3 was the same as for Model 1, and 
the fit for Model 4 only slightly below that of Model 2 (0.39 vs. 0.41). This suggests that 
the attributes can explain the segment level differences in product ratings. 

 
Since no group of quantitative predictors is going to be able to exceed the strength of 

prediction of the nominal PRODUCT variable with its fourteen degrees of freedom, 
Model 1 provides an upper bound on the R2 for Model 2, when the same number of latent 
classes are specified.  A comparison of the R2 of Models 2 and 1 provides an assessment 
how well the sensory predictors perform relative to the maximally achievable prediction.  
In this case study, the twelve sensory attributes captured almost all the information con-
tained in the nominal PRODUCT variable that was relevant to the prediction of overall 
liking.  The inclusion of additional predictors (for example, quadratic terms to model a 
curvilinear relationship between liking and sensory attributes) is therefore not indicated, 
although in other applications cross-product terms or quadratic terms could be very im-
portant in improving model fit or optimizing the attribute levels in new products.   
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With the data structure used in this study (while the attributes take on different values 

for each of the 15 products, they tale on the same values for each individual rater), there 
is a maximum number of predictors (here 14) that can be included in the regression 
model. Effect estimates of predictors beyond this number are not identifiable.  

 
The use of restrictions in LC Regression Model 2 improved the fit over an unrestricted 

model and allowed for the identification of a third segment, one whose overall liking of 
the products was not influenced by the sensory attributes.  While this group was small, in 
certain applications such a group of “random responders” could be of substantive interest 
and warrant follow-up.  If nothing else, the members of such a group can be excluded as 
outliers.     

 
Among the 2 models tested Regression Model 2 yielded the most insight into the con-

sumer liking of the products: the model provided clear segment differentiation, it isolated 
the response level effects from the sensory attribute effects that were of more substantive 
interest, and it identified the sensory drivers of liking for each segment.  

 
Regression models consisting of 1 CFactor to account for a random intercept, and addi-

tional CFactors instead of latent classes could be specified as a way of specifying con-
tinuously varying product or product-attribute effects.  Such as specification is similar to 
what is done in Hierarchical Bayes (HB) (Andrews, Ainslie, and Currim, 2002) and mul-
tilevel model (Goldstein, 1995; Skrondal and Rabe-Hesketh, 2004; Snijders and Bosker, 
1999).  HB models are equivalent to regression models containing one continuous factor 
(C-Factor) for each (non-redundant) predictor regression coefficient plus one additional 
C-Factor for the intercept (15 C-Factors for Model 2). In addition, the prior distribution 
used in HB may lead to somewhat different results than the ML framework. Such HB 
models were investigated with these data by Popper, Kroll, and Magidson (2004) who 
found that the BIC did not support the use of more than two C-Factors. The advantage of 
the LC regression models is that one obtains distinct segments that in the current applica-
tion were found to be meaningful from a product development perspective. 
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