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For linear models, randomization of the assignment to the levels of a variable A

is a su�cient condition to obtain unbiased estimates of the e�ect of A on another

variable B. For logit and logistic models, it is not. In particular, it has been shown

that the omission of a relevant variable Z may result in a biased estimation of the

e�ect of A and in a loss of power. These two phenomena are studied in detail here on

several speci�c simulated cases. By using a logit model with random intercept (which

is equivalent to a Directed Loglinear Model with latent variables) it is shown that the

bias of the estimated e�ect can be partly corrected provided the number of categories

of the omitted variable is known. Finally, consequences for practical use of logit and

logistic models in randomized settings are underlined.
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1 Introduction

In this paper, the consequences of omitting a relevant variable Z in a logit model aimed

at measuring the dependency of variable B on variable A is studied (for a description

of the logit model see, e.g., Agresti, 1990; Hagenaars, 1990). This study is restricted

to the speci�c cases in which the assignment to the categories of A is randomized.
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If a linear model was considered, as the assignment to the level of A is supposed to

be randomized, the estimate of the e�ect of A on B would not depend of the fact that

Z is taken into account in the model or not (see, e.g., Neyman, 1990[1923], Steyer,

1988). If a logit model is considered, this property does not hold anymore and the

e�ect coe�cient of A on B may not be the same if it is estimated whether Z is taken

into account or not. However, as will be seen later, the test of signi�cance of the e�ect

of A on B is still valid even if performed on the collapsed table.

Most3 of the following calculations are presented for all three variables A, B, and

Z being dichotomous (with values 0 or 1), and dummy coding is used to restrict

the parameters. In the continuous or dichotomous cases, there is only one nonzero

parameter for the e�ect of A on B in the logit model on table BAZ (�
BjA

) and in the

logit model on table BA (�
BjA

).

Let Logit(BjA;Z) be the logit of variableB given variablesA and Z, and Logit(BjA)

be the logit of variable B given variable A. The complete logit model can be repre-

sented by the equation:

Logit(BjA = a; Z = z) = log

0
@ �

BjAZ
1 az

1� �
BjAZ
1 az

1
A = �

B

+ �
BjA

a+ �
BjZ

z; (1)

with log(:) being the logarithmic function and �
BjAZ
1 az being the conditional probability

that B = 1 given that A = a and Z = z. Note that the e�ect of A on B is supposed

to be constant across the levels of Z. In order to simplify the calculations, the original

e�ect coe�cients are denoted �, �
A
, and �

Z
, such that � = �

B

, �
A
= �

BjA
, and �

Z
=

�
BjZ

. The logit model obtained from the table collapsed over Z can be represented by:

Logit(BjA) = �
B

+ �
BjA

a:

Variable Z is said to be strongly collapsible if the e�ect coe�cient of A on B

calculated in the collapsed model is equal to the one calculated on the complete model

(Ducharme & Lepage, 1986), i.e., if �
BjA

= �
BjA

. Conditions for strong collapsibility

for the logit model can be stated as follows:

3
In the simulation study presented in Section 3, A is supposed to be continuous.
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Theorem 1 (Ducharme & Lepage, 1986; Guo & Geng, 1995)

Let B, A and Z be three variables, B being categorical, A and Z being either cate-

gorical or continuous. Variable Z is said to be strongly collapsible regarding the e�ect

coe�cient of A on B if and only if:

Z??BjA (i:e: �
BjZ

= 0) or Z??AjB:

Hence, randomization to the level of A is not su�cient to obtain strong collapsibility

of all Z variables. However, if variables A and Z are uncorrelated, and the entire

population is considered, the value of �
BjA

can be shown to lie between 0 and �
BjA

(Gail, 1986). Therefore, if the population is considered, although �
BjA

and �
BjA

always

have the same sign, they are not necessarily equal.

In Section 2, the relationship between �
BjA

and �
BjA

is studied more closely and

the di�erences between the signi�cance tests obtained are underlined. In Section 3,

the use of a random e�ect model is studied in order to correct for the dampening e�ect

obtained by the omitted variable. Finally, the results obtained are summarized and

put in perspective in Section 4.

2 Collapsing variables in logit models (randomized

setting)

The consequences of estimating the e�ect of A on B by �̂
BjA

whereas it should be

estimated by �̂
A
(i.e., �̂

BjA
) are studied �rst in this section. The variation of the

variance of the estimates, and of the power of the test of no e�ect of A on B in both

models, are presented subsequently.

2.1 Value of the e�ect estimates

Both categories of Z are assumed to be nonempty, otherwise the result is trivial. Hence,

the ratio d = �Z0 =�
Z
1 is a strictly positive real number. Since A is independent from Z,

after some calculations, the logit of B conditional on A = a and Z = z obtained from

Equation 1 can be written as follows (see calculations in Appendix A):

Logit(B j A = a; Z = z) = log

�
1+d�exp(��

Z
z)+(1+d)�exp(�+�

A
a)

d+exp(��
Z
z)+(1+d)�exp(����

A
a��

Z
z)

�
;

with exp(:) being the exponential function. Hence, the estimated e�ect of being in

category `1' rather than category `0' of A on the logit of B on the collapsed table can
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be shown to be equal to:

�
BjA

= �
BjA

(�; �
A
; �

Z
; d)

= log

�
1+d�exp(��

Z
)+(1+d)�exp(�+�

A
)

1+d�exp(��
Z
)+(1+d)�exp(�)

�
1+d�exp(�

Z
)+(1+d)�exp(��)

1+d�exp(�
Z
)+(1+d)�exp(����

A
)

�

= log (Q1(�; �A
; �

Z
; d)�Q2(�; �A

; �
Z
; d)) :

(2)

It is easy to show that if �
Z
= 0, then �

BjA
is equal to �

A
. If �

A
is strictly positive,

both Q1(:) and Q2(:) are strictly higher than 1, and �
BjA

is strictly positive. If �
A
is

equal to zero, Q1(:) and Q2(:) are equal to 1 and �
BjA

is equal to zero. If �
A
is strictly

negative, both Q1(:) and Q2(:) are strictly lower than 1 and �
BjA

is strictly negative.

If �
Z
grows unboundedly, the asymptotic values of �

BjA
are:

L1 = lim�
Z
!�1 �

BjA
(�; �

A
; �

Z
; d) = log

�
1+(1+d)�exp(��)

1+(1+d)�exp(����
A
)

�

L2 = lim�
Z
!+1 �BjA(�; �

A
; �

Z
; d) = log

�
1+(1+d)�exp(�+�

A
)

1+(1+d)�exp(�)

�
:

As d is strictly positive, the asymptotic values L1 and L2 are equal to zero if and only

if �
A
= 0. If �

A
= 0, from Equation 2, it is easy to see that �

BjA
is also null. If �

A
is

di�erent from zero, there is only one root for the partial derivative, obtained for �
Z
= 0

(which corresponds to the only root of @�
BjA

(:; :; :)=@�
Z
). This root corresponds to a

maximum for �
A
> 0, and a minimum for �

A
< 0, in accordance with what was found

in Gail (1986). Given certain values of �, d, and �
A
, note that the e�ect value obtained

in the collapsed table is a function of �
Z
only. For example, in Figure 1, the values of

�
BjA

obtained for di�erent values of �
Z
, given �

A
= d = 1 and � = 0 are shown. Given

this example, for high values of �
Z
, the e�ect of A on B can be underestimated by

25% or more if calculated on the collapsed table. However, the estimated coe�cient

remains strictly positive and higher than 50% of its original value.

Note that these underestimations occur for values of �
Z
that can be much larger

than the values of �
A
. Suppose, as may often be the case in practice, that the e�ect

of the omitted variable Z on B is smaller (in absolute value) than the one of A on B.

Then, using Figure 1, it can be shown that, for an e�ect of Z less than twice the one

of A, omitting Z results in an underestimation of the e�ect of A on B of less than 2%.
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Figure 1: Value of the logit e�ect �
BjA

of A on B in the collapsed model given the

value of �
BjZ

(with � = 0, �
A
= 1 and d = 1).

If the e�ect of Z is of the same magnitude as the one of A, the underestimation of the

e�ect of A is of around 6% or less. Hence, if Z has been omitted in the model, but

evidence exists that the e�ect of Z on B is more than two times smaller than the one

of A, the e�ect of A on B may still be relatively correctly estimated from the collapsed

table.

The previous calculations were performed under the assumption that d and � were

equal to one and zero respectively. If now d varies from 0.5 to 10, and the e�ect of

omitting Z on the estimate of the e�ect of A is studied, results shown in Figure 2 can

be obtained. The underestimation is not higher than 6% for any value of d between

0.5 and 10 and any value of �
Z
between -1 and 1. In addition, the further away d from

1, the smaller the underestimation. Hence, as d represents the distribution of Z, if Z

tends to be strongly unequally distributed, the dampening of the e�ect coe�cient of

A on B is smaller.

If the value of � instead of the one of d is varied, the graphs displayed in Figure 3

can be obtained. Here also the underestimation of �
A
is not lower than 6% if Z is

omitted. Further, it seems that the higher the value of � (in absolute value) the lower

5



-1 -0.5 0 0.5 1

Effect Z

1 2 4 6 8 10

Value d

0.94

0.96

0.98

1

Effect A

1 -0.5 0 0 5

Figure 2: Value of the logit e�ect of A in the collapsed model (with � = 0, �
A
= 1,

0:5 < d < 10, and an e�ect of Z not higher than the one of A).
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Figure 3: Value of the logit e�ect of A in the collapsed model (with d = 1, �
A
= 1 = d,

�5 < � < 5, and j�
Z
j � �

A
= 1.).
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the underestimation. For example, for a value of � higher than 3 in absolute value, the

underestimation is not larger than 2%. Note that high values of � represents variables

that are strongly skewed (e.g., with � = 3, �
BjAZ
1 00 is around 95%). Hence, if variable

B represents very rare or very frequent phenomena, the dampening e�ect obtained

because of the omission of relevant variables may be small (in a randomized setting).

Until now the e�ect of A on B was supposed to be independent of the levels of the

omitted variable Z. If the e�ect of A on B depends on the value of Z, the original

logit equation on the complete crosstable should then be written

Logit(BjA;Z) = � + �
A
A+ �

Z
Z ++�

AZ
AZ;

with �
AZ

being the interaction e�ect representing the di�erential of e�ect of A on

B for class 2 of Z compared to class 1 of Z. With a calculation similar to the one

performed for the models without interaction e�ects, it is possible to write �
BjA

as (see

Appendix A)

�BjA = �BjA(�; �
A
; �

Z
; �

AZ
; d)

= log

�
1+d�exp(��

Z
��

AZ
)+(1+d)�exp(�+�

A
)

1+d�exp(��
Z
)+(1+d)�exp(�)

�
1+d�exp(�

Z
)+(1+d)�exp(��)

1+d�exp(��
AZ

)+(1+d)�exp(����
A
��

AZ
)

�
:

For � = 0, d = 1, �
A
= 1, provided that the e�ect of Z and that the interaction

e�ect are lower (in absolute value) than the e�ect of A on B, the variation of �
BjA

given �
Z
and �

AZ
is shown in Figure 4.

From this �gure, several remarks may be done. In the �rst place, the variations are

much more important than previously: for example, the underestimation is of around

20% if �Z = ��AZ = 1. Further, contrary to the previous case, the e�ect of A on

B found in the collapsed table (�
BjA

) can be higher than the original e�ect �A, in

particular for a high positive interaction e�ect and a low (�rst order) e�ect of Z.

The surfaces shown in Figure 5, are similar to the one of Figure 4, but �AZ and �Z are

allowed this time to vary between -3 and +3. For an e�ect of Z of -3 and an interaction

value of 3, the e�ect of A on B found in the collapsed table is already close to zero,

whereas it was always higher than 0.5 for a model without interaction (see Figure 1).

7



-1 -0.5 0 0.5 1

Effect Z

-1 -0.5 0 0.5 1

Inter effect

0.8

0.9

1

1.1

Effect A

1 0.5 0

Figure 4: Value of the logit e�ect of A on B in the collapsed model (with � = 0,

�
A
= 1 = d, d = 1, and with the e�ect of Z and the interaction e�ect lower than �

A
).
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Figure 5: Value of the logit e�ect of A on B in the collapsed model (with � = 0,

�
A
= 1 = d, d = 1, and with the e�ect of Z and the interaction e�ect between -3 and

+3).
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2.2 Variance and power of null e�ect tests

As shown by Robinson and Jewell (1991), if one in
uencing background variable is

omitted, the variance of the e�ect estimates in the logit or logistic models decreases

(i.e., var(�̂
BjA

) � var(�̂
BjA

)), whereas if a linear model was considered, it would have

increased. However, they also showed that, in the logit or logistic models, similarly to

the linear case, the addition of background variables having an e�ect on B results in

an increase of power for the test of null treatment e�ect (Robinson & Jewell, 1991).

In other words, the test no treatment e�ect (�
BjA

= 0 or �
BjA

= 0) is more powerful if

performed on the complete table than if performed on the collapsed table. In order to

evaluate this di�erence in power of the two tests for the logit model, the Asymptotic

Relative E�ciency (ARE) of two tests is used. The ARE can be de�ned as follows.

De�nition 1 The ARE of two tests of null treatment e�ect (b = 0) provided by two

estimators b̂1 and b̂2 of b is de�ned as (Cox & Hinkley, 1974:338):

AREb=0(b̂1 to b̂2) =

�
lim
b!0

��
d

db
b̂1

��
d

db
b̂2

���2
� lim

b!0

V ar(b̂2jA)

V ar(b̂1jA)
:

An ARE higher than 1 means that b̂1 has a greater power than b̂2. For the logit

model presented previously, the ARE of the two tests of null e�ect of A on B (on

complete or collapsed table) can be shown to be equal to (see Appendix B):

AREb=0(�̂
BjA

to �̂
BjA

) = 1 +
d�exp(�)(�1+exp(�

Z
))

2

(1+d)((1+exp(�))2�exp(�Z )+d�(1+exp(�+�Z ))2)
; (3)

or more simply 1 +K(�; �
Z
; d) with a certain function K(:; :; :) being always strictly

positive. Therefore, the test of the hypothesis of no e�ect of A on B from the complete

model has a greater power that the one from the collapsed model, which is in accordance

with the results found by Robinson and Jewell (1991). For example, with di�erent

values of d (and � equal to zero), the ARE of the tests for the null hypothesis given

di�erent values of �
Z
are shown in Figure 6.

Note that the di�erent curves shown in Figure 6 are symmetric, hence the loss of

power (given � = 0 is as important for negative or positive in
uencing estimates).

Further, it can be seen that the lower d, the higher the possible loss of e�ciency for

su�ciently large values of �
Z
. This may be understood as follows. A very large d
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Figure 6: ARE of the null-e�ect test in the complete versus the collapsed model given

the e�ect of the omitted variable Z for di�erent values of d (with � = 0 and �
A
= 1).

indicates that a large part of the population is in the class for which Z = 0, i.e. the

reference class. Omitting the e�ect the e�ect of Z = 1 again Z = 0 may not be much

important as it is only applied to a small subpopulation (the one for which Z = 1).

However, if d is small, then a large part of the population has Z = 1 and the e�ect of Z,

that should be applied to the large subpopulation from which Z = 1 is not accounted

for in the model on the collapsed table. Note that for low values of �
Z
(between -1

and +1), the loss of power is not much dependent on the values of d.

The variation of ARE given �
Z
for di�erent positive values of � (with a d �xed

at 1) are displayed in Figure 7. As the curves for �� are symmetric to the ones with

+� (see Equation 3), only positive values for � are considered here. The di�erent

curves shown are not symmetric anymore given the vertical axis. More speci�cally, the

higher � the lower the loss of power if an omitted Z with a positive e�ect on B has

been omitted, and the higher the loss of power if a covariate Z with a negative e�ect

on B has been omitted. Note that certain values of the ARE obtained by varying �

were much higher than the ones obtained by varying d. But here also the di�erences

obtained for di�erent values of � for low values of �
Z
are not much pronounced.

Suppose that A is a treatment consisting in taking a certain drug or not (no/yes),

and B is the outcome (cured/not cured). Suppose also that the large majority of
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Figure 7: ARE of the null-e�ect test in the complete versus the collapsed model given

the e�ect of the omitted variable Z for di�erent values of � (with d = 1 and �
A
= 1).

the population recover even without treatment (� is large). The asymmetry found in

Figure 7 can be interpreted as follows. The loss of power for detecting a signi�cant

e�ect of the drug remains low if a factor (even strongly) a�ecting positively the recovery

has been omitted, but may be high if a factor negatively a�ecting the recovery has been

omitted.

More generally, note that the limiting values for the ARE values for a logit model

without interaction terms are:

ARE1 = limc!�1ARE(�; �
A
; �

Z
; d) = 1 + exp(��)

(1+d)

ARE2 = limc!+1ARE(�; �
A
; �

Z
; d) = 1 +

exp(�)

(1+d)

It is easy to show that ARE(�; �
A
; �

Z
; d) is included between 1 and Max(ARE1,ARE2).

Hence, the loss of power for the test of null e�ect is bounded. In particular, if the esti-

mated coe�cient �̂
Z
is signi�cantly di�erent from zero at a certain level, and a certain

sample size N , then �̂BjA is also signi�cantly di�erent from zero at the same level with

a �nite sample size N1 (with N1 � N).
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3 Use of a random e�ect model to correct for the

dampening e�ect

Even though the estimation of the logit or logistic e�ect of A on B may be biased if

a relevant variable is omitted, in certain cases and under certain assumptions, it may

be possible to correct for the dampening e�ect resulting from this omission. This is

illustrated here by some results from a small simulation study.

Indeed, assume that the logistic e�ect of a continuous variable A on a dichotomous

variable B does not vary across the levels of a dichotomous variable Z.

Suppose that the complete (and adequate) model, can be represented by the equa-

tion:

Logit(BjA;Z) = �
B

+ �
BjA

A+ �
BjZ

Z;

with A being a continuous variable and Z being a categorical dichotomous variable

with values 0 and 1. As seen in section 2.1, even if the assignment to the levels of A

is randomized, the e�ect of A on B (�
BjA

) estimated from the equation

Logit(BjA) = �
B

+ �
BjA

A;

is lower or equal (population values) to the correct one (�
BjA

). If now a random e�ect

model is used, the value of �
B

may vary across the individuals of the population, and

may therefore possibly correct for the dampening (the correction being perfect if �
B

is equal to �
B

for the subpopulation in which Z = 0 and is equal to �
B

+ �
BjZ

for the

subpopulation in which Z = 1). This random e�ect model can be estimated by �tting

a Directed Loglinear Model with latent variables (for a description of these models see,

e.g., Hagenaars, 1998). Here, the adequate Directed Loglinear Model is constituted by

the two hierarchical loglinear models (with su�cient statistics) f A, Xg (on table A)

and f BA, BX, AX g (on table AB) with X being a latent variable.

In the following, the correction obtained by considering this latent variable is stud-

ied whether X is dichotomous, trichotomous, or continuous (normally distributed).

Here, only a very large sample size (N=1000000) is considered, in order to evaluate,

at the population level, the values of the possible correction. The program `EM (Ver-

munt, 1997) was used to �t these Models. This program contains a modi�ed version

of the EM-algorithm (using also Newton-Raphson), that is usually faster than the

standard EM algorithm and that allows to �t Directed Loglinear Models with latent

variables (Vermunt, 1996:72-73).
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Value of Complete Collapsed Models with latent variable

�
BjZ

model model dichot. trichot. contin.

0 1.00 1.00 1.00 1.00 1.00

1 1.00 0.90 0.99 1.11 0.90

2 1.00 0.71 1.00 1.01 0.72

3 1.00 0.58 1.02 0.99 0.58
4 1.00 0.52 1.00 0.96 0.51

5 1.00 0.49 1.07 0.94 0.49

6 1.00 0.48 1.02 0.94 0.48

7 1.00 0.47 1.05 0.92 0.47

8 1.00 0.47 1.02 0.94 0.47

9 1.01 0.47 1.03 0.94 0.47

10 1.00 0.47 1.05 0.91 0.47

Table 1: Value of �̂
BjA

given �
BjZ

for di�erent models with or without correction for

the dampening e�ect (�
BjA

= 1, �
B

= 0, d = 1, 1 replication, N=1000000).

Similarly to what was done previously, the value of �
B

is set to zero and the one

of �
BjA

is set to 1. The value of �
BjZ

varies from zero to ten by steps of one (due to

the symmetry of the curve �
BjA

(�
BjZ

), values of �
BjA

for negative values of �
BjZ

are

not considered). The results obtained are shown in Table 1. The correction of the

dampening e�ect is almost perfect for a dichotomous latent variable, rather important

for a trichotomous latent variable and almost null for a continuous normal variable.

Hence, if the number of categories of the omitted variable is known and the e�ect of A

on B is the same for each category of Z, the coe�cient calculated from the collapsed

table can be corrected by using this method. However, if the number of category is

unknown and a latent continuous variable is assumed, no correction is obtained by

considering a random e�ect model. Note that �nally, although the correction obtained

by using a dichotomous latent variable, is satisfactory, several solutions (local maxima)

were obtained and only the most satisfactory one (in terms of goodness-of-�t) was

presented here. Hence, the chance of obtaining a suboptimal correction is still high if

the estimation procedures are run only once, and this even for a very large sample size.
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4 Discussion

The problem of collapsing over relevant variables in logit/logistic models in randomized

settings has been studied in this paper. The main results are brie
y recalled and several

consequences for practical use are underlined here.

Suppose that the assignment to the categories of the cause of interest A on the

outcome B have been randomized and that both variables are dichotomous. If another

dichotomous variable Z, that does not interact with A on B and that has an e�ect on

B lower than the one of A, is omitted in the logit equation, the e�ect coe�cient of A on

B, although always lower than the true one, can still be relatively correctly estimated

(with an underestimation of less than 6%, for population values). This result holds for

di�erent distribution of Z and of B, but note that this dampening decreases if either

B or Z have unequal distributions rather than equal distributions. If the e�ect of A on

B varies across the levels of Z, the bias of the e�ect coe�cient of A may be much more

important, and the coe�cient obtained can even become larger than the original one.

If the e�ect of Z and the interaction e�ect of Z and A on B are not higher than the

e�ect of A, the obtained coe�cient may take values between the original value minus

20% and the original value plus 10%.

If the assignment to the categories of A has been randomized and the e�ect of A

on B is null, the regression of B on A is collapsible over all possible Z provided there

is no interaction between Z and A on B. Indeed, this follows from the fact that, at

the population level, �
BjA

is included between 0 and �
A
(e.g., see the graph presented

in Figure 1). Hence, provided the e�ect of A on B is supposed to be zero across the

di�erent values of Z, the test for no treatment e�ect of A on B in the collapsed model

is still valid, albeit this test is less powerful than if Z is taken into account. However,

if the e�ect of A on B varies across the categories of Z (and thus is not null), or if the

assignment to the categories of A is not randomized, this result is not valid anymore.

Similarly to what was found in Robinson and Jewell (1991) for logistic models, the

loss of power for the signi�cance test of an e�ect of A on B if a relevant variable (Z)

has been omitted was shown to be positive and �nite for a logit model. In particular,

the least observations in the reference class of Z, the higher the loss of power. And

if B is skewed on one side, the omission of a variable Z that would \correct" for this

skewness (i.e., for which the conditional distributions of B are less skewed than the

marginal one) results in a higher loss of power than the omission of a variable Z that

accentuates this skewness.
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The use of a random e�ect model in order to correct for the dampening of the co-

e�cient was also presented here. Provided that the latent variable used had the same

number of categories than the omitted one (i.e., here two), the correction was satisfac-

tory. However, if the latent variable was supposed to be continuous no correction was

obtained. Further, several local maxima were obtained. Hence, although this method

can yield satisfactory results, it should be performed with much care.

A Calculation of �
BjA

(�; �
A
; �

Z
; d)

In this section, the calculation of �
BjA

as a function of �, �
A
, �

Z
, and d is presented.

As,

Logit(B = `1'=`0'jA = a; Z = a) = log
�
�
BjAZ
1 az =�

BjAZ
0 az

�
= � + �

A
a+ �

Z
z;

then as B is dichotomous, the following equalities

�
BjAZ
1 az =

exp(�+�Aa+�Z z)
1+exp(�+�Aa+�Z z)

and �
BjAZ
0 az = 1

1+exp(�+�Aa+�Z z)
;

with exp(:) being the exponential function, can be deduced. Further, since A is inde-

pendent from Z (from randomization), the following equations:

�
BjA
b a = �

BjAZ
b a0 �

ZjA
0 a + �

BjAZ
b a1 �

ZjA
1 a

= �
BjAZ
b a0 �Z0 + �

BjAZ
b a1 �Z1

= �Z0 =(1 + exp(�� � �
A
a)) + �Z1 =(1 + exp(��� �

A
a� �

Z
));

can be deduced for B equal to 0 or 1. After having simpli�ed this previous equation,

it is possible to deduce:

�
BjA
1 a

�
BjA
0 a

=
1 + d � exp(��

Z
) + (1 + d) � exp(� + �

A
a)

d+ exp(��
Z
) + (1 + d) � exp(�� � �

A
a� �

Z
)
:

The logit of B conditional on A = a can then be written as follows:

Logit(BjA = a) = log

�
�
BjA
1 a

�
BjA
0 a

�
= log

�
1+d�exp(��

Z
)+(1+d)�exp(�+�

A
a)

d+exp(��
Z
)+(1+d)�exp(����

A
a��

Z
)

�

So, as the e�ect parameters are restricted by e�ect coding:

�
BjA

= �
BjA

(�; �
A
; �

Z
; d)

= Logit(BjA = 1)� Logit(BjA = 0)

= log

�
1+d�exp(��

Z
)+(1+d)�exp(�+�

A
)

1+d�exp(��
Z
)+(1+d)�exp(�)

)�
1+d�exp(�

Z
)+(1+d)�exp(��)

1+d�exp(�
Z
)+(1+d)�exp(����

A
)

�

= log (Q1(�; �A
; �

Z
; d)�Q2(�; �A

; �
Z
; d)) :
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Suppose now that the e�ect of A on B varies given the several levels of Z, then

Logit(B = 1=0jA = a; Z = z) = log
�
�
BjAZ
1 az =�

BjAZ
0 az

�
= � + �

A
a + �

Z
z + �

AZ
az:

Precisely the same reasoning as previously can be performed and the formula obtained

is:

Logit(BjA = a) = log

�
�
BjA
1 a

�
BjA
0 a

�

= log

�
1+d�exp(��

Z
��

AZ
a)+(1+d)�exp(�+�

A
a)

d+exp(��
Z
��

AZ
a)+(1+d)�exp(����

A
a��

Z
��

AZ
a)

�

therefore,

�
BjA

= �
BjA

(�; �
A
; �

Z
; �

AZ
; d)

= log

�
1+d�exp(��

Z
��

AZ
)+(1+d)�exp(�+�

A
)

1+d�exp(��
Z
)+(1+d)�exp(�)

�
1+d�exp(�

Z
)+(1+d)�exp(��)

1+d�exp(��AZ+(1+d)exp(����
A
��

AZ
)

�
:

B Calculation of the ARE of the two tests for the

logit models

As the ARE of two tests of null treatment e�ect (b = 0) provided by two estimators

b̂1 and b̂2 of b is equal to :

AREb=0(b̂1 to b̂2) =

�
lim
b!0

��
d

db
b̂1

��
d

db
b̂2

���2
� lim

b!0

V ar(b̂2jA)

V ar(b̂1jA)
;

then it is possible to show that (Robinson & Jewell, 1991):

AREb=0(b̂1 to b̂2) =
E

h
�
BjAZ
b 0z

i
�E

h
1��

BjAZ
b 0z

i

E

h
�
BjAZ
b 0z

(1��
BjAZ
b 0z

)

i

with E[:] denoting the expected value for the possible values Z = z. Hence,

AREb=0(�̂
BjA

to �̂
BjA

)

=
(�Z0 =(1+exp(��))+�Z1 =(1+exp(����Z )))(�

Z

0
exp(��)=(1+exp(��))+�Z

1
�exp(����

Z
)=(1+exp(����

Z
)))

�Z
0
(exp(��)=(1+exp(��))2)+�Z

1 (exp(����Z )=(1+exp(����Z ))2)

which, after simpli�cation can be shown to be equal to

(1+d+e�+d�exp(�+�Z ))(d+(1+(1+d)�exp(�Z )�exp(�))
(1+d)((1+exp(�))2exp(�Z )+d(1+exp(�+�Z ))2)

;

or

1 +
de�(�1+exp(�Z ))

2

(1+d)((1+exp(�))2exp(�Z )+d(1+exp(�+�Z ))2)
:
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