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Recent developments in latent class (LC) analysis and associated software to include continu-
ous variables offer a model-based alternative to more traditional clustering approaches such as
K-means. In this paper, the authors compare these two approaches using data simulated from
a setting where true group membership is known. The authors choose a setting favourable to
K-means by simulating data according to the assumptions made in both discriminant analysis
(DISC) and K-means clustering. Since the information on true group membership is used in
DISC but not in clustering approaches in general, the authors use the results obtained from
DISC as a gold standard in determining an upper bound on the best possible outcome that might
be expected from a clustering technique. The results indicate that LC substantially outperforms
the K-means technique. A truly surprising result is that the LC performance is so good that it is
virtually indistinguishable from the performance of DISC. 

Introduction
In the last decade, there has been a renewed interest in
latent class (LC) analysis to perform cluster analysis. Such
a use of LC analysis has been referred to as the mixture
likelihood approach to clustering (McLachlan & Basford
1988; Everitt 1993), model-based clustering (Banfield &
Raftery 1993; Bensmail, et al. 1997; Fraley & Raftery
1998a, 1998b), mixture-model clustering (Jorgensen &
Hunt 1996; McLachlan, et al. 1999), Bayesian classifica-
tion (Cheeseman & Stutz 1995), unsupervised learning
(McLachlan & Peel 1996), and latent class cluster analysis
(Vermunt & Magidson 2000, 2002). 

Probably the most important facilitating reason for the
increased popularity of LC analysis as a statistical tool
for cluster analysis is that high-speed computers now
make these computationally intensive methods practical-
ly applicable. Several software packages are available for
estimating LC cluster models.

An important difference between standard cluster analysis
techniques and LC clustering is that the latter is a model-
based approach. This means that a statistical model is pos-
tulated for the population from which the data sample is
obtained. More precisely, it is assumed that a mixture of

underlying probability distributions generates the data. 

When using the maximum likelihood method for para-
meter estimation, the clustering problem involves maxi-
mizing a log-likelihood function. This is similar to stan-
dard non-hierarchical cluster techniques such as K-means
clustering, in which the allocation of objects to clusters
should be optimal according to some criteria. These cri-
teria typically involve minimizing the within-cluster vari-
ation or, equivalently, maximizing the between-cluster
variation. An advantage of using a statistical model is
that the choice of the cluster criterion is less arbitrary
and the approach includes rigorous statistical tests.

LC clustering is very flexible as both simple and compli-
cated distributional forms can be used for the observed
variables within clusters. As in any statistical model,
restrictions can be imposed on the parameters to obtain
more parsimony, and formal tests can be used to check
their validity. Another advantage of the model-based
clustering approach is that no decisions have to be made
about the scaling of the observed variables. For instance,
when working with normal distributions with unknown
variances, the results will be the same irrespective of
whether the variables are normalized. This is very differ-
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ent from standard non-hierarchical cluster methods like
K-means, where scaling is always an issue. Other advan-
tages are that it is relatively easy to deal with variables of
mixed measurement levels (different scale types) and that
there are more formal criteria to make decisions about
the number of clusters and other model features.

In the marketing research field, LC clustering is some-
times referred to as latent discriminant analysis (Dillon
& Mulani 1989) because of the similarity to the statisti-
cal methods used in discriminant analysis (DISC) as well
as logistic regression (LR). However, an important dif-
ference is that in discriminant and logistic regression
modelling, group (cluster) membership is assumed to be
known and observed in the data while in LC clustering it
is unknown (latent) and, therefore, unobservable. 

In this paper, we use a simple simulated data set to com-
pare the traditional K-means clustering algorithm as
implemented in the SPSS (KMEANS) and SAS (FAST-
CLUS) procedures with the latent class mixture model-
ing approach as implemented in the Latent GOLD
(Vermunt & Magidson 2000) package. We use discrimi-
nant analysis as the gold standard in evaluating the per-
formance of both approaches.

Research design
For simplicity, we consider the case of two continuous
variables that are normally distributed within each of two
clusters (i.e., two populations, two classes) with variances
the same within each class. These assumptions are made
in DISC. We also assume that within each class, the vari-
ables are independent of each other (local indepen-
dence), a prerequisite of the K-means approach.
Formally, we generate two samples according to the fol-
lowing specifications:

Within the kth population, y = (y1, y2) is characterized by

the bivariate normal density fk(y|µk, σk, ρk). We set µ1 =

(3,4), µ2 = (7,1), σ1 = σ2 = (2,1), and ρ1 = ρ2 = 0.

Samples of size N1=200 and N2=100 were drawn at ran-

dom from these populations with results given in  Table 1.

Within each population, DISC assumes that y follows a
bivariate normal distribution with common variances and

covariances; assumptions met by our generated data. Under
these assumptions, it also follows that the probability of
group membership satisfies the LR model (see appendix).
Hence, use of both DISC and LR are justified here and
will be used as standards by which to evaluate the results of
K-means and LC clustering. 

In real-world clustering applications, supervised learning
techniques such as DISC and LR cannot be used since
information on group membership would not be avail-
able. Unsupervised learning techniques such as LC clus-
ter and K-means need to be used when group member-
ship is unobservable. For classifying cases in this applica-
tion, the information on true group membership will be
ignored when using the unsupervised techniques. Hence,
the unsupervised techniques can be expected to perform
somewhat worse than the supervised techniques. We will
judge the performance of the unsupervised methods by
observing how good the results are in comparison to the
supervised techniques.

Results obtained from the supervised 
learning techniques

We show in the appendix how the classification perfor-
mance for DISC, LR, and LC cluster analysis can be eval-
uated by estimating and comparing the associated equi-
probability (EP) lines y2 = α′ + β′ y1 for each technique.
Cases for which (y1, y2) satisfies this equation are equal-

ly likely to belong to population 1 or 2 (i.e., the posteri-

Table 1
Design parameters and sample statistics 

for generated data

Class 1 Class 2
Sample Sample

Population Estimate Population Estimate
Parameter Value (N=200) Value (N=100)

Mean (Y1) 3 3.09 7 6.89

Mean (Y2) 4 3.95 1 1.28

Std dev. (Y1) 1 1.06 1 0.99

Std dev. (Y2) 2 2.19 2 1.75

Correlation 0 0.05 0 �0.08
(Y1,Y2)
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or probability of belonging to population 1 and 2 are
both 0.5). Cases falling to the left of the line are pre-
dicted to be in population 1, those to the right are pre-
dicted to be in population 2. Figures 1a and 1b show the
EP-lines estimated from the DISC and LR analyses,
respectively. (See the appendix for the derivation of these
lines.) 

Figure 1a shows that only one case from population 1
falls to the right of the EP line obtained from DISC and
so is incorrectly predicted to belong to population 2.
Similarly, three cases from population 2 fall to the left of
the line and are incorrectly predicted to belong to popu-
lation 1. Comparison of Figures 1a and 1b shows that

the line estimated from LR provides slightly worse dis-
crimination of the two populations and misclassifies one
additional case from the population 1.

DISC correctly classifies 199 of the 200 population 1
cases and 97 of the 100 cases from population 2, resulting
in an overall misclassification rate of 1.3%. This compares
to an overall rate of 1.7% obtained using LR. The results
of these supervised techniques are summarized in Table 2.

Results obtained from the unsupervised
learning techniques

For the unsupervised techniques, true class membership is
assumed to be unknown and must be predicted. Because LC
clustering is model-based, basic model parameters are esti-
mated for class size, as well as means and variances of the
variables within each class. These estimates were found to be
very close to the corresponding sample values which were
used for the DISC analysis (Table 3). As a result of the
closeness of these estimates, the resulting EP-line obtained
from LC clustering turns out to be virtually indistinguish-
able from the corresponding EP-line obtained from DISC
(Figure 1a). A comparison of the slope and intercept of the
EP-lines obtained from DISC, LR, and LC clustering is
given in Table 4. (The formula showing how these EP-line
parameters are obtained as a function of the basic parame-
ter estimates is given in the appendix.)

Classification based on the modal posterior membership
probability estimated in the LC clustering procedure
resulted in only three of the cluster 1 cases and one of
the cluster 2 cases being misclassified � an overall mis-
classification rate of 1.3%, a performance equal to the
gold standard obtained by DISC.
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Figure 1a
Equi-probability line estimated using 

discriminant analysis

-4

-2

0

2

4

6

8

10

12

-2 -1 0 1 2 3 4 5 6 7 8 9 10

class 1

class 2

Y1

Y2

Figure 1b
Equi-probability line estimated using 

logistic regression

Table 2
Results from the supervised 

learning techniques

Misclassified  
Discriminant Logistic

Population Total Analysis  Regression
Class 1 200 1 2  
Class 2 100 3 3  
Total 300 4 (1.3%) 5 (1.7%) 
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Table 5 shows that the overall misclassification rate for K-
means is 8%, substantially worse than LC clustering.
However, the results of K-means, unlike those of LC clus-
tering and DISC are highly dependent upon the scaling of
the variables (results from DISC and LC clustering are
invariant of linear transformations of the variables).

Therefore, we performed a second K-means analysis after
standardizing the variables Y1 and Y2 to Z-scores. Table 5

shows that this second analysis yields an improved misclas-
sification rate of 5%, but one that remains significantly
worse than that of LC clustering. 

If the variables had been standardized in a way that the
within cluster variance of Y1 and Y2 were equated, the K-

means technique would have performed on par with LC
cluster and DISC. This type of standardization, however,
is not possible when cluster membership is unknown.
The overall Z-score standardization served to bring the
within class variances of Y1 and Y2 closer together, but

the within class variance of Y2 remained significantly

larger than that of Y1.

Another factor to consider when comparing LC cluster-
ing with K-means is that for unsupervised techniques, the
number of clusters is also unknown. In the case of K-
means, the researcher must determine the number of
classes without  relying on formal diagnostic statistics
since none are available. In LC modelling, various statis-
tics are available that can assist in choosing one model
over another. 

Table 6 shows the results of estimating six different LC
cluster models to these data. The first four models vary
the number of classes between 1 and 4. The BIC statistic
correctly selects the standard two-class model as best.
The remaining LC models are variations of the two-class

Table 4
Comparison of the parameter estimates of
the equi-probability line Y2 = αα′′ ++  ββ′′ Y1 with

the population values 

αα′′ ββ′′
Population �25.09 5.33  
DISC �25.06 5.33  
LR �25.98 5.54  
LC Cluster �24.90 5.28 

Table 5
Results from unsupervised 

learning techniques

K-means with
LC standardized

Population Total Cluster K-means variables
Class 1 200 1 18 10
Class 2 100 3 6 5
Total 300 4 (1.3%) 24 (8.0%) 15 (5.0%)

Table 6
Results from estimation of several 

LC cluster models

Number of
Log Model

Model Likelihood BIC Parameters
1-Cluster equal �1333 2689 4
2-Cluster equal �1256 2552* 7
3-Cluster equal �1251 2558 10
4-Cluster equal �1250 2574 13
2-Cluster unequal �1252 2555 9
2-Cluster equal + corr �1256 2557 8

* This model is preferred according to the BIC criterion (lowest BIC
value)

Table 3
Comparison of LC Cluster estimates from
the corresponding sample values used by

DISC

Class 1 Class 2
Parameter DISC LC Cluster DISC LC Cluster

Class size 200 200.8 100 99.2

Mean (Y1) 3.09 3.11 6.89 6.88

Mean (Y2) 3.95 3.94 1.28 1.28

Var (Y1) 1.09 1.14 1.09 1.14

Var (Y2) 4.23 4.23 4.23 4.23

Correlation 0.05 0* �0.08 0*
(Y1,Y2)

* Restricted to zero according to the local independence assumption
made by K-means clustering
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model that relax certain assumptions of the model.
Specifically, the fifth model includes two additional vari-
ance parameters (one for each variable) to relax the DISC
assumption of equal variances within each class. The
final model adds a correlation parameter, relaxing the K-
means assumption of local independence. The BIC sta-
tistic correctly selects the standard two-class model as
best among all of these LC cluster models.

Summary and conclusion
Our results suggest that LC performs as well as discrim-
inant analysis and substantially better than K-means for
this type of clustering application. More generally, for
traditional clustering applications where the true classifi-
cations are unknown, the LC approach offers several
advantages over K-means. These include:

1. Probability-based classification. While K-means uses
an ad hoc approach for classification, the LC approach
allows cases to be classified into clusters using model-
based posterior membership probabilities estimated by
maximum likelihood (ML) methods. This approach also
yields ML estimates for misclassification rates. (The
expected misclassification rate estimated by the standard
two-class LC cluster model in our example was 0.9%,
comparable to the actual misclassification rate of 1.3%
that was achieved by LC cluster and DISC. These mis-
classification rates were substantially better than that
obtained using K-means.) Another advantage of assign-
ing a probability to cluster membership is that it prevents
biasing the estimated cluster-specific means; that is, in
LC analysis an individual contributes to the means of
cluster k with a weight equal to the posterior member-
ship probability for cluster k. In K-means, this weight is
either 0 or 1, which is incorrect in the case of misclassi-
fication. Such misclassification biases the cluster means,
which in turn may cause additional misclassifications. 

2. Determination of number of clusters. K-means pro-
vides no assistance in determining the number of clus-
ters. In contrast, LC clustering provides various diagnos-
tics such as the BIC statistic, which can be useful in
determining the number of clusters.

3. No need to standardize variables. Before performing
K-means clustering, analysts must standardize variables

to have equal variance to avoid obtaining clusters that are
dominated by variables having the most variation. Such
standardization does not completely solve the problems
associated with scale differences since the clusters are
unknown and so it is not possible to perform a within-
cluster standardization. In contrast, the LC clustering
solution is invariant of linear transformations on the
variables, so standardization of variables is not necessary.

Additional advantages relate to use of various extensions of
the standard LC cluster models that are possible, such as:

1. More general structures can be used for the cluster-
specific multivariate normal distributions. More precise-
ly, the (unrealistic) assumption of equal variances and the
assumption of zero correlations can be relaxed. 

2. LC models can be estimated where the number of
latent variables is increased instead of the number of
clusters. These LC factor models have been found to out-
perform the traditional LC cluster models in several
applications (Magidson & Vermunt 2001).

3. Inclusion of variables of mixed scale types. K-Means
clustering is limited to interval scale quantitative vari-
ables. In contrast, extended LC models can be estimated
in situations where the variables are of different scale
types. Variables may be continuous, categorical (nominal
or ordinal), or counts or any combination of these
(Vermunt & Magidson 2000, 2002). If all variables are
categorical, one obtains a traditional LC model
(Goodman 1974).

4. Inclusion of demographics and other exogenous vari-
ables. A common practice following a K-means clustering is
to use discriminant analysis to describe differences between
the clusters on one or more exogenous variables. In contrast,
the LC cluster model can be easily extended to include
exogenous variables (covariates). This allows both classifica-
tion and cluster description to be performed simultaneous-
ly using a single uniform ML estimation algorithm.

Limitations of this study
The fact that DISC outperformed LR in this study does
not mean that DISC should be preferred to LR. DISC
obtains maximum likelihood (ML) estimates under
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bivariate normality, an assumption that holds true for the
data analyzed in this study. LR, on the other hand,
obtains conditional ML estimates without reliance on
any specific distributional structure on y. Hence, in other
simulated settings where the bivariate normal assumption
does not hold, LR might outperform DISC since the
DISC assumption would be violated. 

Another limitation of the study was that we simulated data
from a single model representing the most favourable case
for K-means clustering. We showed that even in such a sit-
uation, LC clustering outperforms K-means. When data
are simulated from less favourable situations for K-means,
such as unequal within-cluster variances and local depen-
dencies, the differences between K-means and LC cluster-
ing are much larger (Magidson & Vermunt 2002).
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Case 1: Cluster proportions known. The sample sizes (n1 = 200, n2 = 100) were drawn 
proportional to the known population sizes. Hence, the overall probability of belonging to 
population 1 is twice that of belonging to population 2 : π1 = 2/3, π2 = 1/3, π1/ π2 = 2. In the 
absence of information of the value of y for any given observation, the probability of belonging to 
population 1 is given by the a priori probability π1 = 2/3. 
 
For a given observation y = (y1, y2), following Anderson (1958), the posterior probabilities of 
belonging to populations 1 and 2 can be defined using Bayes theorem as:  
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Thus, the posterior odds of belonging to population 1 is: 
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Eq. (1) states that for any given y, the posterior odds can be computed by multiplying the a priori 
odds by the ratio of the densities evaluated at y. Hence, the ratio of the densities serves as a Bayes 
factor. Further, when the densities are BVN with equal variances and equal covariance, the 
posterior odds follows a linear logistic regression: 
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Under the current assumptions, since 0=ρ , we have: 
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In this case, an observation will be assigned to population 1 when 5.1 >π , which occurs when 
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In LC cluster analysis, ML parameter estimates are obtained for the quantities on the right hand 
side of eqs. (2.1) and (2.2). Substitution of these estimates in eqs. (2.1) and (2.2) yield ML 
estimates for α, β1 and β2 which can be used in eq. (3) to obtain the parameters of the EP-line 'α , 
and 'β . 
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Case 2: Unknown population size 
 
More generally, when the population proportions are not known and the sample is not drawn 
proportional to the population, the uniform prior can be used for the a priori probabilities in 
which case the a priori odds π1/π2 equals 1, and α  reduces to: 
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In the case that 2
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