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A major goal of data mining is to extract a small number of meaningful “factors”
from a larger number of variables available on a database. While traditional factor
analysis (FA) offers such a data reduction capability, it is severely limited in prac-
tice because it requires all variables to be continuous, and it uses the assumption of
multivariate normality to justify a linear model. In this paper, we propose a general
maximum likelihood alternative to FA that does not have the above limitations. It
may be used to analyze combinations of dichotomous, nominal, ordinal, and count
variables and uses appropriate distributions for each scale type. The approach uti-
lizes a framework based on latent class (LC) modeling that hypothesizes categorical
as opposed to continuous factors, each of which has a small number of discrete lev-
els. One surprising result is that exploratory LC factor models are identified while
traditional exploratory FA models are not identified without imposing a rotation.

22.1 Introduction

A major goal of data mining is to extract a relatively small number of meaningful
“factors” from a larger number of variables available on a database. While traditional
factor analysis (FA) offers such a data reduction capability, it is severely limited in
practice for 4 reasons:

1. It requires all variables to be continuous.

2. It uses the assumption of multivariate normality to justify a linear model.
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3. It assumes that the underlying latent variables (factors) are measured on an
interval or ratio scale.

4. Results are generally not unique – in order to interpret the solution users must
select from among possible “rotations,” each of which provides a somewhat
different result.

Although justified only for continuous variables, FA is frequently used in prac-
tice with variables of other scale types including dichotomous, nominal, ordinal, and
count variables. In such cases, the linearity assumption will generally be violated,
as the true model will typically be nonlinear. In particular, when the observed vari-
ables are dichotomous, FA users have sometimes observed the occurrence of non-
informative extraneous factors on which variables having a common skewness (i.e.,
similar marginal distributions) tend to have large factor loadings. It is possible that
such factors serve as proxies for various nonlinearities in the model.

Even when the first 2 assumptions hold true, in the case that one or more latent
variables is dichotomous, statistical inferences used in maximum likelihood FA are
not valid as such tests assume that the factors are multivariate normal.

A promising alternative to FA, proposed by Magidson and Vermunt (2001) utilizes
a framework based on latent class (LC) modeling. This latent class approach to
factor analysis (LCFA) hypothesizes dichotomous or ordered categorical (ordinal)
as opposed to continuous factors, and is especially suited for categorical variables.
While this methodology resolves each of the 4 FA problems stated above, it has its
own limitations. In particular, when used in the exploratory setting, the following
limitations have been noted:

1. LCFA has primarily been applied in confirmatory applications involving a rel-
atively small number of variables. Recent advances in computing power and
the availability of new efficient algorithms suggest that LCFA may be applica-
ble in larger exploratory settings, but this has not yet been tested.

2. The LCFA analogs to the “loadings” used in FA are given by log-linear pa-
rameters, which are not so easy to interpret.

In this paper, we use real data to compare LCFA with FA in situations where
the assumptions from FA are violated. For simplicity, we have limited our current
study to examples where the manifest variables are all dichotomous. To facilitate this
comparison, we linearize the latent class model, transforming the log-linear effects to
linearized parameters comparable to traditional loadings used in FA. Two data sets
are used for this comparison. The first utilizes data analyzed previously by LCFA
(Magidson and Vermunt, 2003) which yields results that are clearly nonlinear. The
second involves 19 dichotomous indicators from the Myers-Briggs Type Indicator,
designed to measure 2 latent dimensions of personality, hypothesized by Karl Jung
to be dichotomous.

The LCFA model is described in section 22.2 along with a brief history of LC
models. Section 22.3 presents results from 2 data examples, where the Latent GOLD
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computer program was used to estimate the LC models. The results are summarized
in section 22.4.

22.2 The Basic LC Factor Model

The LC Factor model was originally proposed for use with nominal manifest and
dichotomous latent variables in various confirmatory applications (Goodman, 1974).
This model was extended for use with ordinal latent variables and for manifest vari-
ables of differing scale types – dichotomous, ordinal, continuous, and count vari-
ables – by Vermunt and Magidson (2000). A basic LC factor model consisting of
K mutually independent dichotomous factors was proposed by Magidson and Ver-
munt (2001) for general exploratory applications. For the expository purposes of
this paper, we limit to applications of this exploratory model. For other applications
involving more complex LCFA models see Magidson and Vermunt (2003).

Let θk denote a value of one of the K dichotomous latent variables. Without loss
of generality we assume that θk can take on two values, 0 and 1. Let y j denote a
value on one of the J observed variables. The most common parameterization of
the basic LC factor model is in terms of unconditional and conditional probabilities.
For example, for 4 nominal variables, a basic 2-factor LC model can be expressed in
terms of the joint probability P(θ1,θ2,y1,y2,y3,y4):

P(θ1,θ2,y1,y2,y3,y4) = P(θ1,θ2)P(y1|θ1,θ2)P(y2|θ1,θ2)
P(y3|θ1,θ2)P(y4|θ1,θ2), (22.1)

where the conditional probability parameters are restricted by logit models. More
precisely, the conditional probability for manifest variable j is assumed to be equal
to

P(y j|θ1,θ2) =
exp(β j0y j + β j1y j θ1 + β j2y j θ2)

∑y j
exp(β j0y j + β j1y jθ1 + β j2y jθ2)

. (22.2)

For the basic factor LC model, the latent variables are assumed to be independent of
one another. Thus, we have the following additional constraint:

P(θ1,θ2) = P(θ1)P(θ2). (22.3)

The constraints of the type in equation (22.2) restrict the conditional response
probabilities in a manner similar to traditional FA by excluding the higher-order
interaction terms involving θ1 and θ2. The β parameters can be viewed as category-
specific “loadings” on the factor concerned, expressed as log-linear parameters. Note
that one identifying constraint has to be imposed on each set of β parameters.

If variable j were instead ordinal or dichotomous, equation (22.2) becomes

P(y j|θ1,θ2) =
exp(β j0y j + β j1 y j θ1 + β j2 y j θ2)

∑y j
exp(β j0y j + β j1 y j θ1 + β j2 y j θ2)

. (22.4)
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in which case a single loading for variable j on each of the 2 factors is given by β j1

and β j2, respectively.
More generally, let θ denote a vector of K latent variables and y a vector of J

observed variables. Then the model becomes:

f (θ ,y) = f (θ ) f (y|θ ) = f (θ )
J

∏
j=1

f (y j|θ) (22.5)

where f (θ ,y) denotes the joint probability density of the latent and manifest vari-
ables, f (θ ) the unconditional latent probabilities, and f (y j|θ ) the conditional density
for variable j given a person’s latent scores. The primary model assumption in equa-
tion (22.5) is that the J observed variables are independent of each other given the
latent variables. That is, as in traditional FA, the latent variables explain all of the
associations among the observed variables.

The conditional means of each manifest variable are restricted by regression type
constraints; that is, by a regression model from the generalized linear modelingfamily.
The following distributions and transformations are used:

Scale type Distribution f (y j|θ) Transformation g(.)
dichotomous binomial logit

nominal multinomial logit

ordinal multinomial restricted logit

count Poisson log

continuous normal identity
In equations (22.2) and (22.4), we gave the form of the regression models for

dichotomous, nominal, and ordinal variables.
Parameters can be estimated by maximum likelihood using EM or Newton-Raphson

algorithms, or combinations of the two. Maximum likelihood estimation of the
LCFA model is implemented in the Latent GOLD program (Vermunt and Magid-
son, 2000).

22.3 Examples

In this section we compare results obtained from the latent class factor model with
the traditional linear factor model.

22.3.1 Rater Agreement

For our first example we factor analyze ratings made by 7 pathologists, each of whom
classified 118 slides as to the presence or absence of carcinoma in the uterine cervix
(Landis and Koch, 1977). Agresti (2002), using traditional LC models to analyze
these data, found that a 2-class solution does not provide an adequate fit to these
data. Using the LCFA framework, Magidson and Vermunt (2003) confirmed that a



Statistical Data Mining and Knowledge Discovery 377

Factor θ1 = 1 (True -) Factor θ2 = 0 (True +)

Factor θ1 Factor θ2

1 0 1 0

Rater 0.35 0.18 0.31 0.16

F

- 1.00 0.99 0.80 0.11

+ 0.00 0.01 0.20 0.89

D

- 1.00 0.98 0.61 0.11

+ 0.00 0.02 0.39 0.89

C

- 1.00 1.00 0.22 0.14

+ 0.00 0.00 0.78 0.86

A

- 0.94 0.59 0.01 0.00

+ 0.06 0.41 0.99 1.00

G

- 0.99 0.46 0.01 0.00

+ 0.01 0.54 0.99 1.00

E

- 0.94 0.28 0.03 0.00

+ 0.06 0.72 0.97 1.00

B

- 0.87 0.01 0.03 0.00

+ 0.13 0.99 0.97 1.00
TABLE 22.1
Estimates of the unconditional and conditional probabilities obtained from the 2-
factor LC Model.

single dichotomous factor (equivalent to a 2-class LC model) did not fit the data but
that a basic 2-factor LCFA model provides a good fit.

Table 22.1 presents the results of the 2-factor model in terms of the conditional
probabilities. These results suggest that factor 1 distinguishes between slides that
are “true positive” or “true negative” for cancer. Factor 2 is a nuisance factor, which
suggests that some pathologists bias their ratings in the direction of a “false +” error
while others exhibit a bias towards “false -” error. Overall, these results demon-
strate the richness of the LCFA model to extract meaningful information from these
data. Valuable information includes an indication of which slides are positive for
carcinoma, as well as estimates of “false +” and “false -” error for each rater.

The left-most columns of Table 22.2 list the estimates of the log-linear parameters
for these data. Although the probability estimates in Table 22.1 are derived from
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Log-linear Communalities based on Linearized model

Rater θ1 θ2 Linear terms only Total θ1 θ2

F 7.2 3.4 0.45 0.60 0.53 0.38 0.40

D 6.0 2.6 0.47 0.54 0.62 0.26 0.26

C 7.2 0.5 0.68 0.68 0.82 0.04 0.04

A 7.7 2.4 0.72 0.75 0.82 0.18 -0.16

G 10.1 5.2 0.76 0.82 0.82 0.27 -0.25

E 6.4 3.8 0.65 0.75 0.72 0.35 -0.31

B 5.3 6.3 0.59 0.76 0.60 0.47 -0.42
TABLE 22.2
Log-linear and Linearized Parameter Estimates for the 2-factor LC Model.

these quantities (recall equation 22.2), the log-linear estimates are not as easy to
interpret as the probabilities.∗

Traditional factor analysis fails to capture the differential biases among the raters.
Using the traditional rule of choosing the number of factors to be equal to the number
of eigenvalues greater than 1 yields only a single factor. (The largest eigenvalue is
4.57, followed by 0.89 for the second largest.) For purposes of comparison with the
LCFA solution, we fit a 2-factor model using maximum likelihood for estimation.

Table 22.3 shows the results obtained from both varimax and quartimax rotations.
The substantial differences between these loadings is not a reliable method for ex-
tracting meaningful information from these data.

The right-most columns of Table 22.2 present results from a linearization of the
LCFA model using the following equation to obtain “linearized loadings” for each
variable j:

E(y j|θ1,θ2) = ρ j0 + ρ j1θ1 + ρ j2θ2 + ρ j12θ1θ2. (22.6)

These 22.3 loadings have clear meanings in terms of the magnitude of validity and
bias for each rater. They have been used to sort the raters according to the magnitude
and direction of bias. The log-linear loadings do not provide such clear information.

The loading on θ1 corresponds to a measure of validity of the ratings. Raters C, A,
and G who have the highest loadings on the first linearized factor show the highest
level of agreement among all raters (Magidson and Vermunt, 2003). The loading on
θ2 relates to the magnitude of bias and the loading on θ1θ2 indicates the direction of
the bias. For example, from Table 22.1 we saw that raters F and B show the most

∗For example, the log-linear effect of A on θ2, a measure of the validity of the ratings of pathologist A, is
a single quantity, exp(7.74)=2,298. This means that among those slides at level 1 of θ2, the odds of rater
A classifying a “true +” slide as “+” is 2,298 times as high as classifying a “true -” slide as “+”. Similarly,
among those slides at level 0 of θ2, this expected odds ratio is also 2,298. The linear measure of effect is
easier to interpret, but is not the same for both types of slides. For slides at level 1 of θ2, the probability
of classifying a “true +” slide as “+” is .94 higher (.99-.06=.93), while for slides at level 0 of θ2, it is .59
higher (1.00 - .41=.59), a markedly different quantity.
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Varimax Rotation Quartimax Rotation

Factor Factor

Rater Comm-
unalities

θ1 θ2 θ1 θ2

F 0.49 0.23 0.66 0.55 0.43

D 0.60 0.29 0.72 0.63 0.45

C 0.62 0.55 0.56 0.77 0.18

A 0.73 0.71 0.48 0.85 0.03

G 0.86 0.83 0.42 0.92 -0.09

E 0.78 0.82 0.31 0.86 -0.18

B 0.69 0.80 0.24 0.80 -0.22
TABLE 22.3
Results Obtained from a 2-factor Solution from Traditional Factor Analysis.

bias, F in the direction of “false -” ratings and B in the direction of “false +”. The
magnitude of the loadings on the nonlinear term is highest for these 2 raters, one
occurring as “+,” the other as “-.”

Table 22.2 also lists the communalities for each rater, and decomposes these into
linear and nonlinear portions (the “total” column includes the sum of the linear and
nonlinear portions). The linear portion is the part accounted for by ρ j1θ1 + ρ j2θ2,
and the nonlinear part concerns the factor interaction ρ j12θ1θ2. Note the substantial
amount of nonlinear variation that is picked up by the LCFA model. For comparison,
the right-most column of Table 22.4 provides the communalities obtained from the
FA model.

22.3.2 MBTI Personality Items

Our second example consists of 19 dichotomous items from the Myers-Briggs Type
Indicator (MBTI) – 7 indicators of the Sensing-iNtuition dimension, and 12 indi-
cators of the Thinking-Feeling personality dimension. These items are designed to
measure 2 hypothetical personality dimensions, which were posited by Carl Jung to
be latent dichotomies.

The log-likelihood values obtained from fitting 0, 1, 2, 3 LC factor models are
summarized in Table 22.4. Strict adherence to the BIC, AIC, CAIC or similar cri-
terion suggest that more than 2 latent factors are required to fit these data due to
violations of the local independence assumption. This is due to similar wording†

used in several of the S-N items and similar wording used in some of the T-F items.

†For example, in a 3-factor solution, all loadings on the third factor are small except those for S-N items
S09 and S73. Both of these items ask the respondent to express a preference between “practical” and a
second alternative (for item S09, “ingenious”; for item S73, “innovative”).
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Model Log-likelihood
(LL)

% of LL Explained Time in seconds ‡

0-Factor 72804 0.00 1

1-Factor 55472 0.24 5

2-Factor 46498 0.36 11

3-Factor 43328 0.40 27
TABLE 22.4
Results of Estimating LC Factor Models.

In such cases, additional association between these items exists which is not explain-
able by the general S-N (T-F) factor. For our current purpose, we ignore these local
dependencies and present results of the 2-factor model.

The right-most column of Table 22.2 shows that estimation time is not a problem.
Estimation of the 3-factor model using the Latent GOLD computer program took
only 27 seconds on a 2000 Megahertz computer.

In contrast to our first example, the decomposition of communalities in the right-
most columns of Table 22.5 shows that a linear model can approximate the LCFA
model here quite well. Only for a couple of items is the total communality not
explained to 2 decimal places by the linear terms only. The left-most columns
of Table 22.5 compares the log-linear and linearized “loadings” for each variable.
The fact that the latter numbers are bounded between -1 and +1 offers easier
interpretation.

The traditional FA model also does better here than the first example. The first
four eigenvalues turn out to be 4.4, 2.8, 1.1 and 0.9. For comparability to the
LC solution, Table 22.6 presents the loadings for the 2-factor solution under Vari-
max and Quartimax rotations. Unlike the first example where the corresponding
loadings showed considerable differences, these two sets of loadings are quite sim-
ilar. The results are also similar to the linearized loadings obtained from the LCFA
solution.

The right-most column of Table 22.6 shows that the communalities obtained from
FA are quite similar to those obtained from LCFA. Generally speaking, these com-
munalities are somewhat higher than those for LCFA, especially for items S27, S44,
and S67 (highlighted in bold).

Figure 22.1 displays the 2-factor bi-plot for these data (see Magidson and Ver-
munt, 2001). The plot shows how clearly differentiated the S-N items are from the
T-F items on the 2-factors. The 7 S-N items are displayed along the vertical dimen-
sion of the plot, which is associated with factor 2, while the T-F items are displayed
along the horizontal dimension, which is associated with factor 1. This display turns
out to be very similar to the traditional FA loadings plot for these data. The advan-
tage of this type of display becomes especially evident when nominal variables are
included among the items.
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Log-linear Linearized Communalities based on

Item θ1 θ2 θ1 θ2 Linear
terms
only

Total

S02 0.03 -1.51 -0.01 -0.61 0.37 0.37

S09 0.01 -1.16 0.00 -0.50 0.25 0.25

S27 -0.03 1.46 0.01 0.55 0.30 0.30

S34 0.07 -1.08 -0.03 -0.45 0.21 0.21

S44 0.11 1.13 -0.04 0.47 0.22 0.22

S67 0.06 1.54 -0.02 0.53 0.28 0.28

S73 0.01 -1.05 0.00 -0.46 0.21 0.21

T06 -1.01 0.53 0.43 0.19 0.22 0.22

T29 -1.03 0.59 0.44 0.20 0.23 0.23

T31 1.23 -0.47 -0.52 -0.15 0.29 0.29

T35 1.42 -0.29 -0.55 -0.09 0.31 0.32

T49 -1.05 0.65 0.44 0.22 0.24 0.25

T51 -1.32 0.30 0.53 0.09 0.29 0.29

T53 -1.40 0.77 0.56 0.22 0.36 0.36

T58 1.46 -0.12 -0.62 -0.03 0.38 0.38

T66 1.23 -0.27 -0.54 -0.09 0.30 0.30

T70 -1.07 0.61 0.43 0.19 0.22 0.23

T75 1.01 -0.39 -0.45 -0.14 0.22 0.22

T87 1.17 -0.45 -0.50 -0.15 0.28 0.28
TABLE 22.5
Log-linear and Linearized Parameter Estimates and Communalities for the 2-Factor
LC Model as Applied to 19 MBTI items.

22.4 Conclusion

In this study, we compared LCFA with FA in 2 cases where the assumptions from
FA were violated. In one case, the resulting linear factor model obtained from FA
provided results that were quite similar to those obtained from LCFA even though
the factors were taken to be dichotomous in the LCFA model. In this case, decom-
position of the LCFA solution into linear and nonlinear portions suggested that the
systematic portion of the results was primarily linear, and the linearized LCFA so-
lution was quite similar to the FA solution. However, the LCFA model was able to
identify pairs and small groups of items that have similar wording because of some
violations of the assumption of local independence.

In the second case, LCFA results suggested that the model contained a sizeable
nonlinear component, and in this case the FA result was unable to capture differential
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Quartimax Rotated Varimax Rotated

Factor Matrix Factor Matrix

Item Factor Factor Comm-

1 2 1 2 unalities

S02 0.08 -0.63 0.06 -0.63 0.40

S09 0.07 -0.50 0.06 -0.50 0.26

S27 -0.06 0.62 -0.05 0.62 0.38

S34 0.07 -0.46 0.06 -0.46 0.22

S44 -0.02 0.55 0.00 0.55 0.30

S67 -0.02 0.64 -0.01 0.64 0.41

S73 0.06 -0.46 0.05 -0.46 0.21

T06 -0.49 0.09 -0.49 0.10 0.25

T29 -0.49 0.10 -0.49 0.11 0.25

T31 0.56 -0.04 0.56 -0.05 0.32

T35 0.58 0.05 0.58 0.04 0.34

T49 -0.50 0.13 -0.50 0.15 0.27

T51 -0.57 -0.03 -0.57 -0.02 0.33

T53 -0.61 0.09 -0.61 0.10 0.38

T58 0.64 0.11 0.64 0.10 0.42

T66 0.58 0.05 0.58 0.03 0.33

T70 -0.49 0.10 -0.49 0.11 0.25

T75 0.50 -0.03 0.50 -0.04 0.25

T87 0.55 -0.04 0.55 -0.05 0.30
TABLE 22.6
Results from Traditional Factor Analysis of the 19 MBTI items.

biases between the raters. Even when a second factor was included in the model, no
meaningful interpretation of this second factor was possible, and the loadings from
2 different rotations yielded very different solutions.

Overall, the results suggest improved interpretations from the LCFA approach, es-
pecially in cases where the nonlinear terms represent a significant source of variation.
This is due to the increased sensitivity of the LCFA approach to all kinds of associ-
ations among the variables, not being limited as the FA model to the explanation of
simple correlations.

The linearized LCFA parameters produced improved interpretation, but in the non-
linear example, a third (nonlinear) component model was needed in order to extract
all of the meaning from the results. This current investigation was limited to 2 di-
chotomous factors. With 3 or more dichotomous factors, in addition to each 2-way
interaction, additional loadings associated with components for each higher-order in-
teraction would also be necessary. Moreover, for factors containing 3 or more levels,
additional terms are required. Further research is needed to explore these issues in
practice.
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FIGURE 22.1
2-factor bi-plot.
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