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ESTIMATING THE ASSOCIATION

BETWEEN LATENT CLASS

MEMBERSHIP AND EXTERNAL

VARIABLES USING BIAS-ADJUSTED

THREE-STEP APPROACHES

Zsuzsa Bakk*
Fetene B. Tekle*
Jeroen K. Vermunt*

Abstract

Latent class analysis is a clustering method that is nowadays widely used in

social science research. Researchers applying latent class analysis will typi-

cally not only construct a typology based on a set of observed variables but

also investigate how the encountered clusters are related to other, external

variables. Although it is possible to incorporate such external variables into

the latent class model itself, researchers usually prefer using a three-step

approach. This is the approach wherein after establishing the latent class

model for clustering (step 1), one obtains predictions for the class member-

ship scores (step 2) and subsequently uses these predicted scores to assess

the relationship between class membership and other variables (step 3).

Bolck, Croon, and Hagenaars (2004) showed that this approach leads to

severely downward-biased estimates of the strength of the relationships stud-

ied in step 3. These authors and later also Vermunt (2010) developed
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methods to correct for this bias. In the current study, we extended these cor-

rection methods to situations where class membership is not predicted but

used as an explanatory variable in the third step, a situation widely encoun-

tered in social science applications. A simulation study tested the perfor-

mance of the proposed correction methods, and their practical use was

illustrated with real data examples. The results showed that also when the

latent class variable is used as a predictor of external variables, the uncor-

rected three-step approach leads to severely biased estimates. The proposed

correction methods perform well under conditions encountered in practice.

Keywords

latent class analysis, three-step approach, bias adjustment, covariates, distal

outcomes, multiple latent variables

1. INTRODUCTION

The use of latent class analysis (LCA; Lazarsfeld and Henry 1968;

Goodman 1974; McCutcheon 1987) is becoming more and more wide-

spread in social science research, especially because of increasing mod-

eling options and software availability. In its basic form, LCA is a

statistical method for grouping units of analysis into clusters, that is, to

identify subgroups that have similar values on a set of observed indicator

variables. Examples of applications include the identification of types of

political involvement (Hagenaars and Halman 1989), subgroups of sub-

stance abuse among youth (Kam 2011), types of psychological contract

(De Cuyper et al. 2008), types of gender role attitudes (Yamaguchi

2000), and types of music consumers (Chan and Goldthorpe 2007).

Identifying the unknown subgroups or clusters is usually just the first

step in an analysis since researchers are often also interested in the

causes and/or consequences of the cluster membership. In other words,

they may wish to relate the latent variable to covariates and distal out-

comes. There are two possible ways to proceed with this latter exten-

sion, namely, using a one-step or a three-step approach. Using the one-

step approach, the relation between the external variables of interest

(covariates and/or distal outcomes) and the latent class variable is esti-

mated simultaneously with the model for identifying the latent variable

(Dayton and Macready 1988; Hagenaars 1990; Yamaguchi 2000;

Muthén 2004). Using the other alternative, the three-step approach, first

the underlying latent construct is identified based on a set of observed

indicator variables, then individuals are assigned to latent classes, and
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subsequently the class assignments are used in further analyses (Bolck

et al. 2004; Vermunt 2010). When all the model assumptions hold, the

more complex one-step approach is better from a statistical point of

view. However, most applied researchers prefer using the simpler three-

step approach. De Cuyper et al. (2008) and Chan and Goldthorpe

(2007) use such a three-step approach with covariates, as do Olino et al.

(2010) and Morin et al. (2011) with distal outcomes.

One reason for using the three-step approach is that researchers see con-

structing a latent typology and investigating how the latent typology is

related to external variables as two different steps in an analysis. For

instance, in an LCA with distal outcomes, the latent classes will typically

be risk groups (e.g., groups of youth delinquents based on delinquency his-

tories or groups of persons with different lifestyles), and the distal out-

comes are events in a later life stage (e.g., recidivism or health status). It is

substantively difficult to argue that the distal outcomes should be included

in the same model as the one that is used to identify the risk groups if one

wishes to investigate the predictive validity of the latent classification.

Another argument for the three-step approach as opposed to the one-

step is that in applications wherein a possibly large set of external vari-

ables is considered, the estimation procedure for the latter approach

might fail because of the sparseness of the analyzed frequency table and

the potentially large number of parameters (Goetghebeur et al. 2000;

Huang and Bandeen-Roche 2004; Clark and Muthén 2009). For exam-

ple, in a study by Mulder et al. (2012), the association of subgroups of

recidivism with 70 possible distal outcomes was analyzed, which would

be impossible using the one-step approach.

A related problem with the one-step approach is that the inclusion of

covariates or distal outcomes can distort the class solution because addi-

tional assumptions are made that may be violated (Bauer and Curran

2003; Tofighi and Enders 2008; Huang et al. 2010; Petras and Masyn

2010). For example, the inclusion of a distal outcome requires specifica-

tion of its within-class distribution, which if misspecified can distort the

whole class solution. It may even happen that rather different class solu-

tions are obtained when different distal outcomes are included sepa-

rately in the model, though theoretically the latent classes should be

based on the indicators and predict only the distal outcome.

Although there are many situations in which researchers may prefer the

three-step LCA, the main disadvantage of this approach is that it yields

severely downward-biased estimates of the association between class
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membership and external variables (Bolck et al. 2004; Vermunt 2010).

Recently, several correction methods were developed to tackle this prob-

lem. Clark and Muthén (2009) proposed a correction method based on

pseudo class draws from their posterior distribution, which, however, still

maintains a relatively large bias in the log odds ratios of the association of

the latent class variable with covariates. Petersen et al. (2012) developed a

method based on a translation of the idea of Bartlett scores to the LCA

context, which in the simulation study performed by the authors turned

out to perform well. Bolck et al. (2004) developed a correction method

that involves analyzing a reweighted frequency table and that can be used

in three-step LCA with categorical covariates. Later Vermunt (2010) sug-

gested a modification of this method, making it possible to obtain correct

standard errors (SEs) and accommodate continuous covariates, and also

introduced a more direct maximum likelihood (ML) correction method.

A limitation of the currently available adjustment methods for three-step

LCA is that they were all developed and tested for the situation wherein

class membership is treated as depending on the external variables.

Moreover, all these methods were studied using models with only a single

latent variable. However, applied researchers are often interested in a much

broader use of the latent class solutions, and thus there should be correction

methods available for a larger variety of modeling options. Given this gap

in the literature, in the current article, we show how the three-step correc-

tion methods developed by Bolck et al. (2004) and Vermunt (2010) can be

adapted to the situation in which the latent variable is a predictor of one or

more distal outcomes, which may be categorical or continuous variables.

We also pay attention to the situation in which the distal outcome itself is

also a categorical latent variable, which implies that one should adjust for

classification errors in both the predictor and the outcome variable.

The content of the article is outlined as follows. First we introduce

the basic latent class model and discuss class assignment and quantifica-

tion of the associated classification error. Then, the two classic ways of

handling external variables in LCA will be presented (namely, the one-

step and three-step approaches). Next, we discuss the correction meth-

ods developed by Bolck et al. (2004) and Vermunt (2010) for three-step

LCA and show how these can be generalized for modeling the joint dis-

tribution of class membership and external variables, from where spe-

cific subcases can be derived. Subsequently, we check the performance

of the different correction methods using a simulation study and illus-

trate them with real data applications.
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2. LATENT CLASS MODELING AND CLASSIFICATION

2.1. The Basic Latent Class Model

Let us denote the categorical latent variable by X, a particular latent

class by t, and the number of classes by T; as such we have t = 1,2, . . .
T. Let Yk represent one of the K manifest indicator variables, where k =

1,2, . . . K. Let Y be a vector containing a full response pattern and y its

realization. A latent class model for the probability of observing

response pattern y can be defined as follows:

P(Y = y) =
X

t

P(X = t)P(Y = yjX = t), ð1Þ

where P(X = t)represents the probability of belonging to class t and

P(Y = yjX = t) the probability of having response pattern y conditional

on belonging to class t. As we can see from equation 1, the marginal

probability of obtaining response pattern y is assumed to be a weighted

average of the t class-specific probabilities.

In a classical LCA we assume local independence, which means that

the K indicator variables are assumed to be mutually independent within

each class t. This implies that the joint probability of a specific response

pattern on the vector of indicator variables is the product of the item-

specific probabilities:

P Y = yjX = tð Þ=
Y

k

P(Yk = ykjX = t): ð2Þ

Combining equations 1 and 2, we obtain the following:

P(Y = y) =
X

t

P(X = t)
Y

k

P(Yk = yk jX = t): ð3Þ

The model parameters of interest are the class proportions P(X = t)

and the class-specific response probabilities P(Yk = yk jX = t). These

parameters are usually estimated by ML.

2.2. Obtaining Latent Class Predictions

While the true class memberships cannot be observed, the parameters of

the measurement model described in equations 1 to 3 can be used to

derive procedures for estimating these class memberships, that is, for
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assigning individuals to classes (Goodman 1974, 2007; Clogg 1981;

Hagenaars 1990). The prediction is based on the posterior probability of

belonging to class t given an observed response pattern y, P(X = tjY = y),

which can be obtained by applying Bayes’s theorem, that is,

P(X = tjY = y) =
P(X = t)P(Y = yjX = t)

P(Y = y)
: ð4Þ

These posterior class membership probabilities provide information

about the distribution over the T classes among individuals with

response pattern y, which reflects that persons having the same response

pattern can belong to different classes. It is important to note that each

individual belongs to only one class but that we do not know to which.

Using the posterior class membership probabilities, different types of

rules can be used for assigning subjects to classes, the most popular of

which are modal and proportional assignment.

When using modal assignment, each individual is assigned to the

class for which its posterior membership probability is the largest.

Denoting the predicted class by W and subject i’s response pattern by

yi, the hard partitioning corresponding to modal assignment can be

expressed as the following:

P(W = sjY = yi) =
1 if P(X = sjY = yi) . P(X = tjY = yi) 8 s 6¼ t

0 otherwise
:

�

An individual is assigned with probability or weight equal to 1 to the

class with the largest posterior probability and with weight 0 to the

other classes. Below we will also use the shorthand notation wis for

P(W = sjY = yi):
To illustrate the class assignment, let us assume that we have a two-

class model and that for a particular response pattern containing 20

respondents we find a probability of 0.8 of belonging to class 1, and of

0.2 of belonging to class 2. This means that 16 persons belong to class 1

and 4 to class 2. Under modal assignment, all 20 individuals will be

assigned to class 1, which means that 4 will be misclassified (but we do

not know which 4). This can be expressed as follows: 16 3 (0) + 4 3 (1)

= 4. It should be noted that modal assignment is optimal in the sense that

the number of classification errors is smaller than with any other assign-

ment rule.
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An alternative to modal assignment is proportional assignment,

which in the context of model-based clustering is referred to as a soft

partitioning method (Dias and Vermunt 2008). An individual with the

response pattern yi will be assigned to each class s with a weight

P(W = sjY = yi) = P(X = sjY = yi), that is, with a weight equal to the pos-

terior membership probability. In our example, this would mean that

each of the 20 observations receive weights of .8 and .2 for belonging

to the first and second class, respectively. In practice, this is achieved

by creating an expanded data file with one record per class per respon-

dent and by using the class membership probabilities as weights in sub-

sequent analyses.

While at first glance it may seem that proportional assignment pre-

vents introducing misclassifications, this is clearly not the case. In our

example, the 16 persons belonging to class 1 receive a weight of .8 for

class 1 instead of a weight of 1, which corresponds to a misclassifica-

tion of .2, and the 4 persons belonging to class 2 receive a weight of .2

for class 2 instead of a weight of 1, which corresponds to a misclassifi-

cation of .8. The total number of misclassifications for the data pattern

concerned is therefore 16 3 (.2) + 4 3 (.8) = 6.4.

Although modal and proportional assignment are the most common

methods, it is also possible to use other rules. An example is the random

assignment of individuals to classes based on the posterior class mem-

bership probabilities, which is in fact a stochastic version of the propor-

tional assignment rule. The expected number of misclassification is the

same under random and proportional assignment. A rule similar to

modal assignment involves assigning individuals to class s if the poster-

ior probability is larger than a specific value. For example, in a two-

class model, one assigns an individual to class 1 if the posterior mem-

bership probability for this class is larger than .7 and otherwise to class

2. Compared to modal assignment, such a rule reduces the number of

misclassifications into class 1 but increases the misclassifications into

class 2.

It is clear that irrespective of the assignment method used, class

assignments and true class scores will differ for some individuals

(Hagenaars 1990; Bolck et al. 2004). As is shown in more detail below,

the overall proportion of misclassifications can be obtained by aver-

aging the misclassification probabilities of all data patterns. This overall

classification error can be calculated irrespective of the assignment rule

applied.
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2.3. Quantifying the Classification Errors

The overall quality of the classification obtained from an LCA can be

quantified by P(W = sjX = t), that is, by the probability of a certain class

assignment conditional on the true class. The larger the probabilities for

s = t, the better the classification. Using the LCA parameters, this quan-

tity can be obtained as follows:1

P(W = sjX = t) =
X

y

P(Y = yjX = t)P(W = sjY = y)

=

P
y

P(Y = y)P(X = tjY = y)P(W = sjY = y)

P(X = t)
:

ð5Þ

In fact, the overall classification errors are obtained by averaging the

classification errors for all possible response patterns. As indicated by

Vermunt (2010), when the possible number of response patterns is very

large, it is more convenient to estimate the classification errors by aver-

aging over the patterns occurring in the sample, which involves repla-

cing P(Y = y) by its empirical distribution:

P(W = sjX = t) =

1
N

P
i

P(X = tjY = yi)wis

P(X = t)
, ð6Þ

where N is the sample size and, as indicated above, wis =

P(W = sjY = yi): Below we will show how P(W = sjX = t) is used in the

correction methods for three-step LCA.

The concept of classification error is strongly related to the concept

of separation between classes. The latter refers to how well the classes

can be distinguished based on the available information on Y. More

specifically, lower separation between classes corresponds to larger

classification errors. Measures for class separation, and thus also for

classification error, quantify how much the posterior membership prob-

abilities P(X = sjY = yi) deviate from uniform. For this purpose, one can

use, among others, the principle of entropy: �
P

t P(X = tjY = y)

log P(X = tjY = y). The proportional reduction of entropy when Y is
available compared to the situation in which Y is unknown is a pseudo
R-squared measure for class separation (Vermunt and Magidson 2005)
and thus also for the quality of the classification of a sample.
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3. LCA WITH EXTERNAL VARIABLES: THE TWO
TRADITIONAL APPROACHES

There are a variety of ways in which external variables may play a role

in an LCA; the most common ones are depicted in Figure 1 (1.121.5).

We denote an external variable by Z, the latent variable by X, and the

vector of indicators by Y. It should be noted that while the use of multi-

ple latent variables is possible, for simplicity of exposition, in the main

part of the current article, we focus on the situation of a single X and

illustrate the possibility of extension to multiple latent variables in one

of the empirical examples.

In its most general form, we can think of the latent class variable (X)

being measured by its indicators (Y) and being associated with external

variables (Z), without specifying a causal order between X and Z (see

Figure 1.1). More specific cases are when Z is a distal outcome (see

Figure 1.2), when Z is a predictor of X (see Figure 1.3), or when Z con-

tains both predictors (Zp) and distal outcomes (Zo) (see Figure 1.4).

The most general form of an association between X and Z, without

specifying a causal order (see Figure 1.1), involves modeling the joint

probability of the three sets of variables as follows:

P(Z = z, X = t, Y = y) = P(Z = z, X = t)P(Y = yjX = t): ð7Þ

Z Z Z

X

Y

(1.1) (1.2) (1.3) (1.4) (1.5)

Y Y Y

Y
X X X

X

Zp Zp

ZO

ZO

Figure 1. Types of associations between the latent variable (X), its indicators
(Y), and other external variables (Z) that can be outcome variables (Zo) or
predictor variables (Zp) of the latent variable.
Note: While 1.1 through 1.4 can be estimated using any of the methods discussed here,

model 1.5 can be estimated only with the one-step approach.

280 Bakk et al.

 at Tilburg University on January 21, 2014smx.sagepub.comDownloaded from 

http://smx.sagepub.com/
http://smx.sagepub.com/


Note that in this expression we make the assumption that Z and Y are

conditionally independent of one another given X. This means that Z is

associated with X, but controlling for X it is not associated with the indi-

cators. This is a rather standard assumption in latent variables models

with external variables, which is moreover needed for the adjusted

three-step approaches.

Based on the substantive theoretical arguments about the causal

relationship between X and Z, the joint distribution in equation 7 can be

adapted to accommodate specific cases. For instance, if we assume that

the latent variable depends on the external variable, the relationship

between X and Z can be analyzed using a model of the form (see

Figure 1.3):

P(Z = z, X = t, Y = y) = P(Z = z)P(X = tjZ = z)P(Y = yjX = t):

Because the marginal distribution of Z is typically not of interest, it

can be dropped, and the model can be defined as follows:

P(X = t, Y = yjZ = z) = P(X = tjZ = z)P(Y = yjX = t): ð8Þ

Another type of situation that is often of interest is when the latent

variable is a predictor of the external variable (see Figure 1.2). In this

case, we use a model of the form:2

P(Z = z, X = t, Y = y) = P(X = t)P(Z = zjX = t)P(Y = yjX = t) ð9Þ

When some of the Z variables are predictors and others outcomes

(see Figure 1.4), the model becomes the following:

P(Zo = zo, X = t, Y = yjZp = zp) = P(X = tjZp = zp)

P(Zo = zojX = t, Zp = zp)P(Y = yjX = t);

where Zo is the distal outcome variable and Zp a covariate. Note that

the latter two models require the specification of the conditional distri-

bution of Z (Zo) to quantify the effect of X on Z. In the current article,

we will use a normal distribution for continuous Z and a multinomial

distribution for ordinal and nominal Z. The regression models used are

linear, cumulative logistic, and multinomial logistic regression (Agresti

2002).

When the implied conditional independence assumption holds, each

of the four variants described above can be investigated using either a
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one-step or a three-step procedure. However, when this is not the case,

one may prefer using a one-step approach, in which it is possible to

relax the assumption that Z and Y are conditionally independent given

X (Huang and Bandeen-Roche 2004), contrary to the three-step

approaches, where this is yet not possible.3 Extensions of the standard

latent class model using the one-step approach make it possible to

include direct effects of covariates on indicators, or residual correlations

between indicators and distal outcomes, as shown in Figure 1.5.

Readers interested in such extensions are referred to the literature avail-

able on these models (Hagenaars 1988; Bandeen-Roche et al. 1997;

Huang and Bandeen-Roche 2004). It should be mentioned that when

the assumptions of conditional independence of Z and Y are violated,

this can influence model parameters; there is a need to further investi-

gate whether the three- or the one-step approach is more affected by

this.

In the following we will restrict ourselves to the situation in which Z

and Y can be assumed to be independent given X. We will show how

the relevant models can be estimated using one-step LCA, standard

three-step LCA, and bias-adjusted three-step LCA.

3.1. One-Step Approach

Using this approach, the external variables are incorporated in the latent

class model, and the resulting extended model is estimated simultane-

ously with the measurement model. The extended model can be seen as

being composed of two parts: the measurement model that comprises

information on Y given X and the structural part that deals with the rela-

tionship between X and Z.

Both covariates (see Figure 1.3) and distal outcome variables (see

Figure 1.2) can be included, possibly in combination with one another

(see Figure 1.4), and the inclusion of direct effects of covariates on

dependent variables is possible (see Figure 1.5). In situations wherein

the class membership is used as a predictor of one or more external

distal outcomes Z, the latter have a role similar to those of the indica-

tor variables (Hagenaars 1990:135–42; Muthén 2004; Huang et al.

2010).
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3.2. The Standard Three-step Approach

The method that is presented graphically in Figure 2 proceeds as fol-

lows. In the first step, the measurement model for the relationship

between the latent variable and its indicators is built, as described by

equation 3 and depicted in Figure 2.1. In the next step, using the infor-

mation from the first step, subjects are assigned to latent classes based

on their scores on the indicator variables, as depicted in Figure 2.2. In

this process different assignment rules can be used, the most common

ones being modal and proportional assignment. In the third step, the

predicted class membership variable (W) is used in further analyses,

implying analyzing the relationship between W and Z (see Figure 2.3).

Bolck et al. (2004) proved that the estimates of the log-odds ratios

characterizing the relationship between Z and W will always be smaller

than those characterizing the relationship between Z and X and proposed

a correction method that can be used with categorical external predictors

(see Figure 1.3). Their correction method was later extended by Vermunt

(2010), who showed how to adjust for the downward bias in the SEs

obtained by the initial method and how to include continuous covariates

in the step-three model. Vermunt also proposed an ML-based correction

method. In the following, we present these two correction methods and

show how these can be generalized to the situation in which the class

membership is a predictor instead of an outcome variable.

4. GENERALIZATION OF THE EXISTING
CORRECTION METHODS FOR THREE-STEP LCA

While in the standard three-step procedure we estimate the relationship

between W and Z, actually we are interested in the relationship between

X and Z The key to the correction methods lies in the fact that it is pos-

sible to show how the X-Z distribution is related to the W-Z distribution.

X Y

(1) (2) (3)

Y W W Z

Figure 2. The steps of the standard three-step approach.
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Let us first refer to Figure 3, which shows how the four (sets) of vari-

ables of interest are connected.

From the joint distribution of X, Z, W, and Y, we can derive the mar-

ginal distribution of W and Z by summing over all possible values of X

and Y; that is,

P(W = s, Z = z) =
X

t

X
y

P X = t, Y = y, Z = z, W = sð Þ

=
X

t

P(X = t, Z = z)
X

y

P(Y = y, W = sjX = t, Z = z)

=
X

t

P(X = t, Z = z)

X
y

PðY ¼ yjX ¼ t; Z ¼ zÞPðW ¼ sjX ¼ t; Z ¼ z;Y ¼ yÞ:

Given that W depends only on Y (as a consequence of the way the

class assignment are obtained) and that Y is assumed to be independent

of Z given X (the assumption depicted in Figure 1.1), and subsequently

replacing PðY ¼ yjX ¼ tÞ by P Y ¼ yð ÞP X ¼ tjY ¼ yð Þ=P X ¼ tð Þ
using Bayes theorem, we obtain:

P W = s, Z = zð Þ=
X

t

P(X = t, Z = z)

P
yP Y = yð ÞP X = tjY = yð ÞP(W = sjY = y)

P(X = t)

=
X

t

P X = t, Z = zð ÞP(W = sjX = t): ð10Þ

X

Z

Y W

Figure 3. The relationship between variables W, X, Y, and Z in the three-step
approach.
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The last substitution follows from the definition presented in equa-

tion 5. As can be seen from equation 10, the entries in the W and Z dis-

tribution are weighted sums of the entries in the X and Z distribution,

where the weights are the misclassification probabilities P(W = sjX = t):
This suggests that the relationship between X and Z can be obtained by

adjusting the relationship between W and Z for the misclassification

probabilities P(W = sjX = t):
The correction methods developed by Bolck et al. (2004) and Vermunt

(2010) are based on an equality similar to the one described in equation

10. The difference is that these concern the relationship between the con-

ditional distributions of X given Z and W given Z, so the situation where

Z is a covariate and X is the outcome. As we have shown above in equa-

tion 10, the correction methods can also be applied to the joint distribu-

tion of X and Z. From this joint distribution the conditional distribution of

Z given X can be obtained when the latent variable X is considered to be

a predictor of external variable Z. The extension of the methods lies on

the realization that the classification error depends only on the measure-

ment model. The consequence of this is that irrespective of the role of X

and Z in describing their mutual relationship, the adjustments remain the

same. The same type of adjustments can also be used with multiple latent

variables, as we will discuss shortly in a later section.

4.1. The Three-Step ML Approach

The ML-based correction method introduced by Vermunt (2010)

involves defining a latent class model with one or more covariates (Z)

affecting the latent variable X and with the predicted class membership

W as the single indicator of the underlying latent variable X. An impor-

tant difference compared to a standard LCA is that the conditional

response probabilities P W = sjX = tð Þ are not estimated but fixed to their

estimated values from the previous step.

Vermunt’s (2010) procedure can easily be adapted for the modeling

of the joint distribution of X and Z or the conditional distribution of Z

given X. As can be seen from equation 10, even if we have information

only on Z and W and if P W = sjX = tð Þ is known, it is possible to specify

a (latent class) model yielding information on the association between X

and Z. This requires using W as an indicator of X and defining the form

of the X-Z distributions. Equation 10 can also be reexpressed as follows:
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P W = s, Z = zð Þ=
X

t

P X = tð ÞP(Z = zjX = t)P W = sjX = tð Þ, ð11Þ

corresponding to the situation in which X is a predictor of Z. Note that

this yields a latent class model with two indicators, Z and W, where W

comprises all the information on the classification from the first two

steps. An assumption underlying this model is that Z and W are condi-

tionally independent given X, which is in agreement with the structure

depicted in Figure 3 and is necessary for all of the currently existing

three-step approaches. What is also required is that one specifies the

distributional form of P(Z = zjX = t).

The parameters of the model in equation 11 can be estimated by max-

imizing the following log likelihood function:

LogLML =
X

i

log
X

t

P(X = t)P Z = zjX = tð ÞP(W = sjX = t): ð12Þ

This can be achieved with any software for LCA that can accommo-

date parameters fixed to some specific values. We fix P(W = sjX = t) to

the estimates from step 2.

The possibility of using Z variables of different scale types requires

that one should be able to specify an appropriate distribution for Z.

Logical choices are a normal distribution for continuous Z, a multino-

mial distribution for nominal or ordinal Z, a Poisson distribution for

count Z, and so forth.

4.2. The Bolck-Croon-Hagenaars (BCH) Approach

The ML correction method described above uses the classification errors

from step 2 directly in a latent class model for W and Z. In contrast, the

solution developed by Bolck et al. (2004) for categorical external predic-

tor variables—which we refer to as the BCH approach—involves reex-

pressing the relationship described in equation 10 as follows:

P X = t, Z = zð Þ=
X

s

P W = s, Z = zð Þd�st; ð13Þ

where d�st represents an element of the inverted T-by-T matrix D with

elements P(W = sjX = t):4 In other words, if we weight the W-Z distribu-

tion by the inverse of the classification errors, we obtain the distribution

we are interested in. Bolck et al. (2004) proposed using this relation,

which applies at the population level, to reweight the data on W and Z
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(the frequency table with observed counts nzs). As shown by Vermunt

(2010), their approach involves maximizing the following pseudo (or

weighted) log likelihood function:

LogLBCH =
X

z

X
s

nzs

X
t

d�st log P(X = t, Z = z)

=
X

z

X
t

n�zt log P(X = t, Z = z),

ð14Þ

where the n�zt =
P

s

nzsd
�
st are the reweighted frequencies used to estimate

the relationship between X and Z.

4.3. The Modified BCH Approach

Vermunt (2010) highlighted three shortcomings of the BCH method:

Only categorical predictors can be used, SEs are underestimated, and

the method needs a tedious data preparation stage that has to be repeated

for each external variable. To solve these issues, the author proposed a

modification to the BCH method consisting in reexpressing the pseudo

log likelihood function in terms of individual observations. That is,

LogLBCH =
X

i

X
s

wis

X
t

d�st log P(X = t, Z = zi)

=
X

i

X
t

w�it log P(X = t, Z = zi),

ð15Þ

where wis is a class assignment weight and w�it =
P

s

wisd
�
st. Note that the

standard three-step procedure involves using the nonreweighted wis in
the third step. To apply this modified BCH method, an expanded data
file has to be created containing T records for each subject with X val-
ues t = 1,2,3 . . . T and weights w�it. This weighted data set can be ana-
lyzed with standard methods.

While equation 15 shows how to estimate parameters of the joint dis-

tribution of X and Z, it can be modified for the estimation of the condi-

tional distribution of Z given X as follows:

LogLBCH =
X

i

X
t

w�it log P(X = t)P(Z = zjX = t)

=
X

i

X
t

w�it log P(X = t) +
X

i

X
t

w�it log P(Z = zjX = t):
ð16Þ
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Because the first term does not contain parameters of interest, it can

be ignored and we can just maximize a pseudo log likelihood function

based on the second term. Note that this formulation makes it possible

to apply the BCH method to external variables of any scale type and

thus also with continuous and ordinal Z variables. By applying a robust

or sandwich variance estimator, one can prevent SEs’ being underesti-

mated as is the case with the original BCH approach. The robust

variance-covariance matrix of the parameters is the inverse of the

matrix obtained by ‘‘sandwiching’’ the Hessian by the average outer

product of gradients for the independent observations (Skinner, Holt,

and Smith 1989).

4.4. ML Adjustment with Multiple Latent Variables

For the simplicity of exposition, so far we have focused on the situation

in which the step 3 latent class model of interest contains only one

latent variable. However, both the ML and BCH methods can easily be

extended to be applicable with multiple latent variables. We will illus-

trate this for the somewhat simpler ML approach.

Suppose one is interested in the association between latent variables

X1 and X2. A stepwise modeling approach implies that one performs a

separate LCA for each of these two latent variables and obtains class

assignments W1 and W2. Implicitly, this means that an additional

assumption is made, namely, that the indicators used in the model for

X1 are independent of X2 conditionally on X1 and vice versa. Given

these assumptions are met, it is no problem to estimate the measurement

models separately. The relationship between the joint distribution of the

assigned class memberships and the true class memberships can be

expressed in a way similar to equation 10, as follows:

P W1 = s1, W2 = s2ð Þ=
X

t1

X
t2

P(X1 = t1, X2 = t2)

P W1 = s1jX1 = t1ð ÞP(W2 = s2jX2 = t2):

ð17Þ

This is a latent class model that can be estimated using LCA packages

that support the use of multiple latent variables—here X1 and X2—and

fixed value parameters—here P W1 = s1jX1 = t1ð Þ and P(W2 = s2jX2 = t2).

As shown for the X-Z association, rather than modeling the joint dis-

tribution of X1 and X2, it is also possible to model the conditional distri-

bution—P(X2 = t2jX1 = t1)—and also when observed predictors are
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included in the model—P(X2 = t2jX1 = t1, Z = z). Moreover, extension to

more than two latent variables is straightforward. The ML method with

multiple latent variables can be used in any LCA package that supports

the use of multiple latent variables and fixed value parameters. We

illustrate the use of this method with our second real data example.

The generalized correction methods introduced above will be tested

in the following with a simulation study and illustrated with two real

data examples. For ease of readability, the simulation study focuses on

the situation with one independent latent variable and one dependent

external variable. The extension to more complex models is shown using

the examples. To show the ease of use and applicability with the real

data example, the syntax used in Latent GOLD (Vermunt and Magidson

2005, 2008) will be included as well. Since Vermunt (2010) showed that

the SEs are underestimated using the original BCH method, here we will

use only the modified BCH method with robust SEs.

5. SIMULATION STUDY

5.1. Design

A simulation study was conducted to check the quality of the proposed

adjusted three-step LCA methods in situations in which the latent vari-

able is treated as a predictor of one or more external variables (distal

outcomes). In the simulation study, the BCH and ML correction meth-

ods were compared with the one-step and the standard three-step

approaches. A method can be considered to perform well when the

parameter estimates are unbiased and their variation is small, and in

general the estimates are accurate. In the simulation study we will

manipulate two key factors: the separation between classes (which as

explained earlier is strongly related to the size of the classification

error)5 and the sample size, both of which have been found to affect the

performance of the correction methods when the three-step LCA

involved prediction of class membership using external variables

(Vermunt 2010). Separation between classes is manipulated via the

strength of the relationship between the classes and the indicators.

Other conditions that could have been varied are number of items, num-

ber of item categories, and class sizes, but these are all conditions that

basically affect the separation between classes. To keep the simulation
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simple and manageable, we decided to manipulate class separation only

via the class-item association.

We tested the performance of the correction methods for three types

of distal outcomes, that is, for Z nominal, ordinal, or continuous. Two

conditions were used for the strength of the X-Z relationship, corre-

sponding to a weaker and a stronger effect of X on Z. Data were gener-

ated from the full (X, Y, Z) model. In the following, the population

values for all the parts of the model are provided.

The population model we used is a three-class model for six dichoto-

mous response variables and a single distal outcome variable. The pro-

file of the classes is as follows: Class 1 is likely to give the high

response on all indicators, class 2 scores high on the first three indica-

tors and low on the last three, and class 3 is likely to give the low

response on all indicators. The separation between classes was manipu-

lated by changing the conditional response probabilities for the indica-

tors. The probability for the likely response was set to .70, .80, and .90,

corresponding to a (very) low, middle, and high separation between

classes. These settings correspond with entropy based R2 values of .36,

.65, and .90, respectively. In the following we will refer to these condi-

tions as the low, mid, and high separation condition. Sample size is also

important because it affects the accuracy of the estimates. The three

sample sizes used were 500, 1,000, and 10,000. Note that a class separa-

tion of .36 is in fact extremely low and a sample size of 10,000 is rather

large.

We used three types of outcome variables, a trichotomous nominal, a

trichotomous ordinal, and a continuous outcome, which we modeled

using a multinomial logit, a cumulative logit, and a linear model, respec-

tively, with the first class and the first category of the outcome variable

as the reference category.

For the nominal outcome, the condition with a strong effect of X on Z

was obtained by setting the intercepts a2 and a3 to 22.08 and the effect

parameters to 3.87 (b22), 3.17 (b23), 2.08 (b32), and 2.08 (b33), where

the first index refers to the distal outcome category and the second to

the class. Note that this setup yields some probabilities close to 0, which

can cause estimation problems, as we will see in the Results section.

For the condition with a weaker effect of X on Z we set both intercepts

equal to 21.098, b22 to 2.01, b23 to 1.50, and b32 and b33 to 1.09.

For the ordinal outcome variable, in the high effect condition the

thresholds were set to 2.94 (a2) and 1.55 (a3) and the effect parameters
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to 21.55 (b2) and 24.33 (b3) for classes 2 and 3, respectively. This

setup also yields some probabilities close to 0. In the low effect condi-

tion, the thresholds were set to 2.74 (a2) and 1.82 (a3) and the effect

parameters to 21.23 (b2) and 23.01(b3).

For the continuous outcome variable, in the strong effect condition,

we set the class-specific means to 21, 0, and 1 (corresponding with an

intercept of 21 and slopes of 1 and 2) and the error variance to 1. In the

weak effect condition, we set the class-specific means equal to 20.2, 0,

and 0.2 and kept the same error variance.

For the simulation study and the real data application, two computer

programs were used: Latent GOLD (Vermunt and Magidson 2005,

2008) and R. In Latent GOLD we simulated the data, set up the mea-

surement model, saved the scores on the posterior class assignment, and

ran all the correction methods with both modal and proportional assign-

ment. We used R to construct the D matrix and compute its inverse and

to create the expanded data matrix containing the relevant weights (R

code is available in appendix A). The D matrix was computed using

equation 6, that is, using the empirical distribution of the responses. For

each of the 54 conditions, which were obtained by crossing the three

separation, three sample size, three types of external variable, and two

effect size conditions, we used 500 replications.

5.2. Results

The results are presented both averaged across conditions and separately

for some of the conditions. We pay attention to parameter bias (mea-

sured by comparing the average estimated value with the true values),

efficiency (measured by the standard deviation [SD] across replications),

and the bias in the estimated SEs (measured by comparing the average

estimated SE with the SD across replications).

Before looking at these figures, we would like to present an impor-

tant unanticipated result for the BCH method when applied with a nom-

inal or an ordinal outcome variable Z. Some of the replications turned

out to contain negative cell frequencies in the adjusted X-Z frequency

table, in which case the corresponding multinomial distribution is not

defined. This happened mainly in the least favorable condition coupling

a low-class separation (large classification errors) with a small sample

size (large sampling fluctuation). The possibility of such a failure of the

BCH method is an important new result because it was not reported by
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Bolck et al. (2004) or Vermunt (2010). While an ad hoc solution could

be to fix the probabilities corresponding to negative counts to zero, we

decided to exclude replications with negative frequencies from the

results reported below. In the replication samples wherein the BCH

method gave negative frequencies, the three-step ML method gave logit

coefficients going to plus or minus infinity, corresponding to boundary

solutions. Boundary solutions also occurred with the one-step ML

method in the low separation and low sample size conditions. The repli-

cations with negative frequencies and boundary solutions were excluded

from further analysis. Table 1 provides information on the number of

excluded replications per condition.

Table 2 presents the results averaged over all sample sizes and

separation levels for one parameter per outcome variable. It reports the

average estimate, average SE, and SDs of estimates for each method.

As can be seen, the proportional standard method has the largest bias.

When averaged across conditions, we can see that the correction meth-

ods still slightly underestimate the parameters. The bias is less than 5

percent for the continuous and ordinal outcome variable and close to 10

percent for the nominal outcome variable. As shown below, bias varies

strongly across separation and sample size conditions (is larger with

low separation and small sample size and absent with higher separation

and large sample size). As expected, when estimating a correctly speci-

fied model, the one-step approach yields a good approximation of the

Table 1. Number of Excluded Replications for the Nominal and Ordinal
Outcome Variable due to Negative Frequencies or Boundary Solutions

Sample
Size

Separation
Level

Correction
Methods

One-step
Maximum
Likelihood

Nominal—strong X-Z effect
500 Low 63 200
1,000 Low 59 59
500 Mid 4 1
1,000 Mid 1 0

Nominal—weak X-Z effect
500 Low 9 46
1,000 Low 5 4

Ordinal—strong X-Z effect
500 Low 20 28
1,000 Low 18 0
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parameter of interest (bias less than 5 percent). It should be mentioned

that with the exception of the low sample size and low separation

between classes conditions, the correction methods perform well, hav-

ing bias less than 5 percent for all outcome variables as well.

As can be seen from the SDs across replications, the correction meth-

ods perform similarly, in terms of efficiency, with each other and the

one-step ML method. Comparison of the average estimated SE across

replications with the SD of the parameter estimate across replications

shows that the correction methods slightly underestimate the SE, with

the exception of the proportional ML method, which overestimates the

SE for the nominal outcome variable. Overall, the difference between

the SEs and SDs is smallest for the proportional ML method, except for

the nominal outcome variable.

When we look separately at the parameter estimates in each of the

investigated conditions, we can see large differences between condi-

tions. As seen in Tables 3 and 4, the one-step ML method obtains esti-

mates close to the true values, with the exception of the combination of

small sample size and low separation between classes, where it tends to

overestimate the parameter. For all outcome variables, the correction

methods perform poorly in the low separation and small sample size

conditions, a result that is similar to the one reported by Vermunt

(2010). Note that this applies to each of the three types of response vari-

ables and both for a strong and a weak X-Z association. The reason for

this bad performance with low separation and small sample size is that

in this situation the differences between classes are overestimated in the

first step, yielding an underestimate of (too optimistic) the classification

error, and as a consequence a too moderate adjustment by the BCH and

ML correction methods. In the middle and high separation conditions,

the correction methods perform well. While in the high separation con-

ditions the performance of the correction methods using modal versus

proportional assignment did not differ, in the lower separation condition

this is not the case. With middle separation and especially with low

separation between classes, the estimates obtained with the proportional

assignment approximated better the true values than the ones obtained

using modal assignment for all three types of outcome variables.

Table 5 reports the average SE and SD across replications for one

selected parameter (from the condition with a nominal Z variable weakly

related to the classes) for the nine sample size and class separation com-

binations. As we can see, in the conditions with a low separation and a
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smaller sample size, the proportional ML and one-step ML methods

tend to overestimate parameter uncertainty (SE is higher than SD). The

other correction methods slightly underestimate the SEs in all nine con-

ditions. With regard to efficiency, the correction methods perform simi-

larly to the one-step ML method, with the exception of the combination

of small sample size coupled with low separation, for which the correc-

tion methods are more efficient. Comparison of these results to those for

other outcome variables and effect sizes showed that the SE bias of the

correction methods is slightly larger in the strong effect condition for

nominal and ordinal outcomes and smaller for continuous outcomes irre-

spective of the effect size.

6. TWO EMPIRICAL EXAMPLES

6.1. Example 1: Types of Psychological Contracts

To illustrate the working of the correction methods, we analyzed data

from the Dutch and Belgian sample of the Psychological Contracts across

Employment Situation (PSYCONES) project (European Commission

2006). We used the same questionnaire items as did De Cuyper et al.

(2008), who performed an LCA to build a typology for psychological con-

tracts between employers and employees. Out of the eight dichotomous

indicators, four refer to employees’ obligations (whether a promise was

made or not) and four to employers’ obligations, where each set of four

items contained two items for relational and two for transactional obliga-

tions. Examples of the wording of items are, ‘‘This organization promised

me a reasonably secure job’’ and ‘‘This organization promised me a good

pay for the work I do.’’ The sample consisted of 1,365 respondents. The

distal outcome variable Z was perceived job insecurity, measured using

the scale from the PSYCONES project. This scale consists of four items

with five categories and had a Cronbach’s alpha value of .88. We used a

composite score calculated from summing the four indicators to measure

job insecurity.

In the first step, we fitted the measurement model using the eight

indicator variables. Based on the Bayesian Information Criteria (BIC)

values and the bivariate residuals between the items, it was concluded

that a four-class model fitted the data well. Table 6 presents the para-

meter estimates for this four-class model. Class 1 (9 percent of respon-

dents) is characterized by mutual low obligations. Class 2 (10 percent)

represents employee underobligation: These respondents are likely to
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perceive employers’ obligations as given and have a lower probability

of perceiving their own obligations as promised. Class 3 (29 percent)

represents employees who themselves made promises to the organiza-

tion but received less: the overobligation class. Class 4 (52 percent)

scores high on all items, representing mutual high obligations.

After identifying the classes, the posterior class membership probabil-

ities were saved, and the D matrix with elements P(W=s|X=t) and its

inverse were calculated. The one-step and the corrected and uncorrected

three-step methods were used to analyze the relationship between class

membership and perceived job insecurity, where the latter is treated as a

continuous variable with a constant error variance; that is, in the three-

step approaches, we used a linear regression to regress job insecurity on

Table 6. Class Proportions and Class-specific Probabilities of a Positive
Response for the Four-class Model Estimated for the Psychological Contracts
across Employment Situation Data

Class 1
Mutual

Low
Class 2

Underobligation
Class 3

Overobligation

Class 4
Mutual
High

Class proportion .09 .10 .29 .52
Employers’ obligations

Reasonably secure
job

.21 .87 .36 .90

Opportunities to
advance

.17 .84 .30 .90

Good pay for the work .26 .75 .28 .87
Safe working

environment
.28 .73 .55 .97

Employees’ obligations
Show loyalty to the

organization
.08 .36 .72 .96

Volunteer to do tasks
outside your job
description

.17 .37 .82 .96

Turn up for work on
time

.18 .38 .96 .98

Meet the
performance
expectations for
your job

.28 .77 .97 .99
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class membership, and in the one-step method, we used job insecurity as

a continuous indicator variable. We also ran the analysis treating job

insecurity as ordinal variable, and relating the psychological contract

type and job insecurity using a cumulative logit link, and obtained com-

parable results. To keep a more parsimonious model, we opted for treat-

ing job insecurity as continuous. This is the Latent GOLD syntax used

for three-step ML with modal assignment:

variables

latent X nominal 4;

dependent Jobinsecurity continuous, W nominal;

equations

X\- 1;

JobInsecurity\- 1 + X;

W\- (D~wei) 1 | X;

D={.867 .043 .089 .000

.066 .691 .094 .148

.014 .026 .860 .101

.000 .006 .055 .938}

As can be seen, an LCA is performed with two indicators (dependent

variables), where the specified D matrix fixes the X-W association. For

the BCH method, an expanded data set is created with weights based on

the inverse of the D matrix. Using this weighted data set, Z is regressed

on X. For example, in the case of modal assignment, an individual

assigned to class 1 (W = 1) receives the weights: 1.154, 20.100, 0.016,

and 20.001 for classes 1, 2, 3, and 4, respectively. Under modal assign-

ment, the proportion of classification errors is .11, and the correspond-

ing entropy-based R2 equals .72. This indicates that the classes are well

separated and that as a result the corrected three-step methods can be

expected to perform well.

The estimated effect sizes of psychological contract type on job inse-

curity (and their SEs) and the value of the Wald test for the overall effect

(and its p value) are reported in Table 7. As we can see in the table, the

job insecurity of the employee underobligation (class 2) and mutual-

high-obligations group (class 3) is lower than for those in the mutual-

low-obligations group (class 1). The job insecurity of the employee

overobligation group is similar to that of the mutual-low-obligations

group. Comparing the effect parameters obtained by the different meth-

ods, we can see that the standard three-step procedures yield estimates
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that are far away from ones of the other methods, while all the other

methods yield similar estimates. The correction methods have slightly

smaller parameter values than the one-step method, where the three-step

ML methods are closer to the one-step method than the BCH methods.

Similar to the results of the simulation study, the SEs obtained using the

proportional ML method are slightly larger than the ones obtained using

the other correction methods and the one-step ML. The SEs obtained by

the other correction methods are similar to the ones obtained using the

one-step ML method. Looking at the Wald tests of the correction meth-

ods, it can be seen that the Wald value for the proportional ML method

is the lowest, meaning that this method is the most conservative.

6.2. Example 2: The Effect of Religiosity and Social Status on

Political Ideology: A Multiple Latent Variable Model

In many research situations, it is of interest to predict a latent outcome

variable from other latent variables. We will illustrate how the ML

three-step method can be used for this purpose with data from the Dutch

sample of the 1981 European Value Survey (GESIS-Variable Reports

No. 2011). More specifically, we investigate how religiosity affects

political ideology while controlling for social status. Social status is an

observed variable with four ordinal categories: professional/managerial,

semiskilled, unskilled, or unemployed or pensioner (1); skilled manual

Table 7. Effect of Class Membership on Job Insecurity, Standard Errors
(SEs), Multivariate Wald Test for the Effect, and Its Significance Obtained
with the Seven Methods, Using Dummy Coding with First Class as Reference
Category

Method Class 2 (SE) Class 3 (SE) Class 4 (SE) Wald (df) p

One-step ML 20.60 (0.16) 0.10 (0.13) 20.46 (0.11) 68.04 (3) \ .001
Modal standard 20.41 (0.13) 0.04 (0.10) 20.36 (0.10) 56.43 (3) \ .001
Proportional

standard
20.34 (0.13) 0.01 (0.10) 20.35 (0.10) 42.82 (3) \ .001

Modal BCH 20.53 (0.12) 0.08 (0.10) 20.42 (0.09) 89.94 (3) \ .001
Proportional

BCH
20.50 (0.12) 0.08 (0.10) 20.43 (0.09) 87.76 (3) \ .001

Modal ML 20.53 (0.16) 0.09 (0.13) 20.43 (0.11) 57.65 (3) \ .001
Proportional

ML
20.54 (0.19) 0.10 (0.14) 20.44 (0.12) 44.35 (3) \ .001

Note: ML = maximum likelihood; BCH = Bolck-Croon-Hagenaars.
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workers (2); sales, clerical, and other nonmanual (3); and above average

lifestyle (4). We used social status as a numeric covariate in the analy-

sis. Similarly to Hagenaars and Halman’s (1989) work on the same data

set, we modeled political ideology and religiosity as categorical latent

variables measured using multiple indicators.

Religiosity was measured with six indicators, among which are pray-

ing, belonging to a church, and belonging to a denomination (see

Table 8). We selected the three-class model based on the BIC and the

goodness of fit (L2 = 83.68, df = 74, p = .21). Class separation is good

(entropy R2 = .85). Table 8 shows the class solution. Group 1 (34 per-

cent) is the ‘‘nonreligious,’’ scoring low on all items, while group 2, the

‘‘middle’’ (33 percent), has mixed scores and the last group, the ‘‘reli-

gious,’’ (33 percent) score high on all items.

Political ideology was measured with six indicators, among which are

party closeness and Left-Right orientation (see Table 9). We fitted latent

class models with different numbers of classes and selected the three-

class model based on the lowest BIC and a nonsignificant goodness-of-

fit statistic (L2 = 79.38, df = 74, p = .31). Class separation is moderate

(entropy R2 = .68). Group 1 can be characterized as ‘‘left wing’’ (27

Table 8. Class Proportions and Class-specific Probabilities of Religiosity for
the Three-class Model Estimated for the 1981 Wave of the European Value
Survey Data

Class 1
Nonreligious

Class 2
Middle

Class 3
Religious

Class proportion 0.34 0.33 0.33
Religiosity no 0.95 0.06 0.01

yes 0.05 0.94 0.99
Personal God no 0.99 0.80 0.11

yes 0.01 0.20 0.89
Traditionalism nontraditional 0.84 0.15 0.01

intermediate 0.15 0.65 0.06
traditional 0.01 0.20 0.93

Religious organization
membership

no 0.96 0.66 0.25

yes 0.04 0.34 0.75
Denomination yes 0.08 0.80 0.99

no 0.92 0.20 0.01
Prayer yes 0.32 0.66 0.96

no 0.68 0.33 0.04
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percent), group 2 as ‘‘middle/indifferent’’ (37 percent), and the last

group as ‘‘right wing’’ (35 percent).

Note that the two measurement models are estimated separately.

Each yields a set of modal class assignments and an estimate of the D

matrix with the conditional probability of being assigned to a class con-

ditional on the true class membership. The class assignments and the

two D matrices can be used to set up the model in which (latent) politi-

cal ideology is predicted from social status and (latent) religiosity. The

syntax for the specified model using the three-step ML method is pro-

vided in appendix B. Table 10 reports the estimates for the effects of

religiosity and social class on political ideology obtained with the one-

step, the adjusted three-step, and the standard unadjusted three-step

approach. As can be seen, the results obtained with all three methods

point toward the same tendencies. While the estimates from the one-

step and the corrected three-step method are rather similar, the uncor-

rected three-step approach yields smaller effect sizes.

Based on the estimated multinomial logit coefficients, one can con-

clude that controlling for social class, the more religious a person, the

more likely it is that he or she is politically Right or middle/indifferent

rather than Left. Moreover, the higher the social class, the more likely

Table 9. Class Proportions and Class-specific Probabilities of Political
Mentality for the Three-class Model Estimated for the 1981 Wave of the
European Value Survey Data

Class
Class 1

Left
Class 2

Middle/Indifferent
Class 3
Right

Class proportion 0.27 0.37 0.35
Left/Right Left 0.89 0.25 0.02

middle 0.10 0.53 0.27
Right 0.01 0.22 0.71

Political interest no 0.28 0.77 0.39
yes 0.72 0.23 0.61

Trust in Parliament no 0.60 0.68 0.26
yes 0.40 0.32 0.74

Societal change no 0.17 0.20 0.41
yes 0.83 0.80 0.59

Equality versus freedom equality 0.51 0.60 0.76
freedom 0.49 0.40 0.24

Party closeness yes 0.92 0.10 0.83
no 0.08 0.90 0.17
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he or she is to be right wing rather than left wing, while there is no sig-

nificant effect of social class on the middle-Left contrast.

7. DISCUSSION

We proposed a generalization of existing correction methods for the

attenuation problem appearing in three-step LCA with external vari-

ables. We showed how two existing correction methods for latent class

models with covariates can be generalized to a broader range of situa-

tions, that is, to formulate models for the joint probability of class mem-

bership and external variables. The correction methods can therefore

now be applied in any situation in which we wish to relate scores on

class membership with external variables, irrespective of the hypothe-

sized causal order. Although we focused mainly on the situation in

which class membership is a predictor of a continuous, ordinal, or nom-

inal outcome variable, the correction methods can be applied in relation

with distal outcome variables having almost any of the distributional

forms from the exponential family. We also showed how the ML cor-

rection method can be extended to models with more than one latent

variable.

Table 10. Multinomial Logit Coefficients from the Regression of Religiosity
on Social Class on Political Ideology, Standard Errors (SEs), Multivariate
Wald Tests, Obtained with Three Methods Using Dummy Coding with the
First Class as Reference Category for Religiosity and Political Ideology

Political =
Middle (SE)

Political =
Right (SE) Wald (df)

One step ML
Religiosity = middle 0.67 (0.35) 0.80 (0.41) 52.80 (4)
Religiosity = religious 1.23 (0.57) 3.09 (0.50)
Social class 20.27 (0.47) 1.39 (0.39) 18.33 (2)

Modal ML
Religiosity = middle 0.48 (0.34) 0.72 (0.45) 39.85 (4)
Religiosity = religious 1.10 (0.46) 2.76 (0.48)
Social class 20.15 (0.43) 1.33 (0.41) 14.83 (2)

Uncorrected modal
Religiosity = middle 0.43 (0.27) 0.65 (0.31) 47.94 (4)
Religiosity = religious 0.99 (0.31) 2.10 (0.33)
Social class 0.04 (0.33) 1.03 (0.32) 16.74 (2)

Note: ML = maximum likelihood.
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The performance of the correction methods was tested by a simula-

tion study and illustrated with two real data examples. The results of the

simulation study show, similarly to previously reported results, that

using the uncorrected three-step approach leads to seriously biased para-

meter estimates of the association of class membership with external

variables. Although the direction of the effects is correct, the effect sizes

are very much attenuated. As such, it is recommended that one use one

of the correction methods when deciding to use the three-step approach.

All correction methods we tested perform well; both their estimates and

SEs can be trusted, with the exception of the situations wherein the class

separation of the measurement model is very low, in which situation

they underestimate the parameter estimates and SEs. The most efficient

correction method is the proportional ML method. In general, the results

obtained with proportional assignment are better than those obtained

using modal assignment. A nonanticipated result is that for nominal out-

comes the BCH method may fail because of the occurrence of negative

cell frequencies, a problem that is much more likely to occur with a

(very) low separation between classes. Therefore, the use of the one-step

or three-step ML methods is recommended in these situations.

One of the limitations of the current study is that it examined the

behavior of the correction methods only for the situation in which model

assumptions hold; that is, we did not look at situations in which distribu-

tional assumptions about the external variables and/or conditional inde-

pendence assumptions are violated. As such it is recommended that

future research look into adapting the three-step methods to be able to

accommodate situations wherein the conditional independence assump-

tion does not hold. Another option to be investigated is testing the per-

formance of the different methods under model misspecification. Our

expectation is that the adjusted three-step methods may perform better

than the one-step method under misspecification, which is one of the

issues we will focus on in future research.

Another limitation is that we focused mainly on parameter bias and

less on hypothesis testing. This means that we cannot say anything yet

about issues such as amount of power decrease of statistical tests such

as the Wald test resulting from using the proposed correction methods.

This is another topic for future research.
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APPENDIX A

R Code for the Computation of the D Matrix and Restructuring of

the Data File

#read in the file containing the posterior class

assignment probabilities to R

library(foreign, pos=4)

classa\- read.spss(‘‘class.sav’’,use.value.

labels=TRUE, max.value.labels=Inf, to.data.

frame=TRUE)

#creating the weights needed for the D matrix

calculation

n\-length(classa$id) # the length of the data file

ctm\-matrix(nrow=n,ncol= 9) #modal weights 3*3

class

ctp\-matrix(nrow=n,ncol= 9)#proportional

weights 3*3 class

modal\-matrix(nrow=n,ncol= 3) # modal class

assignment 3 dummies for 3 classes

for (j in 1:3) # creating dummies for modal

posterior class assignment

{

modal[,j]\- ifelse (classa[,12]==j, 1, 0)

}

# obtaining the elements of the D matrix

i\-1

for (s in 1:3) # looping over all combinations of

posterior classification probabilities

{

for (k in 1:3)

{

ctm[,i]\- classa[,k+8]*modal[,s] # creating the modal correction

weights

if (k==1) fixed\-classa[,s+8] #where classa

[9:11]are the proportional posterior

classification probabilities

ctp[,i]\- classa[,k+8]*fixed # creating the

proportional correction weights

i\-i+1

}

}
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combined\-matrix(c(modal,ctm,ctp),ncol=21,

nrow=n) #collecting all weights to a matrix

COLSUMS\- matrix(c(apply(combined,2,sum)),

1,21) #summing all the weights

# creating the modal D matrix

DIM\- solve(matrix(c((matrix(c(COLSUMS

[,4:12]),3,3,byrow=F))/apply(matrix(c(COLSUMS[,4:12]),

3,3,byrow=F),1,sum)),3,3))

#creating the proportional D matrix

DIP\-solve(matrix(c((matrix(c(COLSUMS[,13:21]),

3,3, byrow=F))/apply(matrix(c(COLSUMS[,13:21]),

3,3, byrow=F),1,sum)),3,3))

#final modal bch weights applied to each case i

wm1\- ((combined[,1]*DIM[1,1]) +( combined[,2]

*DIM[2,1]) + (combined[,3]*DIM[3,1]))

wm2\- ((combined[,1]*DIM[1,2])+ (combined[,2]

*DIM[2,2])+ (combined[,3]*DIM[3,2]))

wm3\- ((combined[,1]*DIM[1,3]) +( combined[,2]

*DIM[2,3])+ (combined[,3]*DIM[ [3,3]))

# final proportional bch weights applied to each

case i

wp1\- ((classa [,9]*DIP[1,1])+( classa [,10]

*DIP[2,1])+(classa [,11]*DIP[3,1]))

wp2\- ((classa [,9]*DIP[1,2])+( classa [,10]

*DIP[2,2])+( classa [,11]*DIP[3,2]))

wp3\- ((classa [,9]*DIP[1,3])+( classa [,10]

*DIP[2,3])+( classa [,11]*DIP[3,3]))

#create and save long file

class_longa\-data.frame (classa[,1:8],

wmodal1=combined[,1], wmodal2=combined[,2],

wmodal3=combined[,3], wprop1=classa[,9],

wprop2= classa[,10],wprop3=classa[,11],

wbchmodal1=wm1, wbchmodal2=wm2,

wbchmodal3=wm3,wbchprop1=wp1,

wbchprop2=wp2, wbchprop3=wp3)

library(Hmisc)

class_long\- reShape(class_longa, base=

c(‘wmodal’,’wprop’,’wbchmodal’,’wbchprop’),

reps=3)
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write.table(class_long, ‘‘class_long.txt’’,

sep=‘‘ ‘‘, col.names=TRUE, row.names=FALSE,

quote=TRUE, na=‘‘NA’’)

APPENDIX B

Latent GOLD Syntax Used for Example 2

options

output parameters=first standarderrors

estimatedvalues;

variables

dependent PoliticalModal, ReligiosityModal;

independent SocialClass;

latent Political nominal 3, Religiosity nominal 3;

equations

Religiosity\- 1 + SocialClass;

Political\- 1 + Religiosity + SocialClass;

PoliticalModal\- (D~wei) 1 | Political;

ReligiosityModal\- (F~wei) 1 | Religiosity;

D = {0.854843 0.078100 0.067056

0.036183 0.890474 0.073343

0.022912 0.113239 0.863849};

F = {0.970735 0.029264 0.000000

0.037784 0.883258 0.078959

0.000000 0.050674 0.949326};
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Notes

1. Note that in equation 5, we implicitly use the equality P(W|Y,X)=P(W|Y). This fol-

lows from the fact that class assignment depends only on Y (and the latent class anal-

ysis model parameters) but not directly on X.

2. While in equation 8 it is clear that the extension to more covariates Z is straightfor-

ward, this is also possible using equation 9, assuming conditional independence of

outcomes given X.
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3. Although in this article we emphasize the need of the conditional independence

assumption to hold to be able to use any of the three-step methods, it should be

mentioned that an extension of the corrected three-step approaches could be devel-

oped that makes it possible to include direct effects of categorical covariates on

indicators in the model. This could be done by applying the weighting that we pres-

ent in the following pages separately at every level of the external covariate.

4. Using matrix algebra, we can write equation 10 as E = A D, where E contains the

P(W = s, Z = z), A the P(X = t, Z = z), and D the P(W = s|X = t). Standard matrix

operation yields A = E D–1, which is what is expressed in equation 13.

5. The separation is measured by the entropy R-squared, which tells how much the pre-

diction of X improved when using the information on Y. If P(X = t|Y = y) is close to

0 or 1 for most data patterns, the separation between classes is good, and the classifi-

cation error is low.
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