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Background

• By accounting for continuous respondent heterogeneity, 
traditional approaches such as hierarchical Bayes (HB) models 
for estimating unconstrained random effects regression models 
outperform aggregate models with respect to in-sample
predictions.

• It has been suggested however, that HB over-fits sample data 
and thus out-of-sample predictions might be worse than 
indicated by in-sample performance and be more susceptible to 
invalid inferences (Natter et. al., 2002; Andrews et. al., 2002; 
Magidson et. Al, 2003). 

• As a solution to the overfitting problem, a new class of 
continuous factor (C-Factor) models has been proposed, 
providing a more parsimonious alternative to HB for estimating 
random and mixed effects conjoint and choice models.
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Outline of Presentation

• Overfitting – what is it?
– Illustration based on a simple fixed effects regression simulation

• Introduction to CFactor models for random effects
• Comparison of CFactor and traditional HB approaches

– Example 1: Analysis of sensory preferences for crackers
– Example 2: Bank segmentation data re-analysis

• Conclusions
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Overfitting – What is it?

• Models that overfit data contain too many free parameters. While 
overfitting improves upon in-sample predictions, such 
improvement may come at the expense of out-of-sample 
performance.

• In the presence of overfitting, in-sample performance measures 
such as R2 and hit rate shrink when used to predict out-of-sample 
performance. 

• With a moderate amount of overfitting, the shrinkage becomes so 
large that out-of-sample performance becomes substantially worse 
than that obtained with little or no overfitting.
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Simple Simulated Example of Overfitting:     
Including extraneous predictors in a regression model

• Use a linear regression to estimate fixed effects of K 
predictors Z1, Z2, …, ZK , on the dependent variable Y.

• Assume that only the first 2 predictors are important in 
determining Y; that is, the K-2 predictors Z3, Z4, …, ZK 
are extraneous.

• Use the true regression model to generate 2 sets of 
values for the dependent variable (Y1 and Y2) based on 
2 exchangeable (matched) samples, one to be used for 
model estimation, the other for validation.
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Simple Simulated Example of Overfitting

For matched* samples m = 1, 2, assume the model:

Ym = α + β1Z1 + β2Z2 + β3Z1 + … + βKZK + εm     is ‘truth’

where α = 0
β1 = .3 β3 = β4 = … = βK = 0
β2 = .4

N = 100 cases are simulated for each sample as follows:

each Zk , εm i.i.d.  N(0,1),   k=1,2,…,K    m=1,2.  

*  The samples are matched (exchangeable) in the sense that each case 
in sample #2 has the same predictor values for Z1, Z2, … ZK, as its 
matched counterpart in sample 1. The samples differ from each other 
only with respect to the random error term ε1 and ε2.

This implies R2 = 0.2
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Results of simulation where Population R2 = .2
What happens if extraneous predictors Z3, Z4, … are included? 

• The in-sample R2 increases well beyond .2 with 12 or more extraneous predictors, and 
the amount of shrinkage when applied out-of-sample increases substantially.

• Out-of-sample performance begins to deteriorate with a moderate amount of 
overfitting, as irrelevant variation dominates the predictions. 

• With no extraneous predictors, the sample R2 values are unbiased estimates of the 
true R2, and the corresponding shrinkage when applied out-of-sample is quite small.

         In-Sample Predictions Out-of-Sample Predictions
R2 obtained from R2 obtained when model estimates from one sample
OLS regression are used to generate predictions for the other sample

(K-2)
# extraneous Sample 2 used to Sample 1 used to
 predictors Sample 1 Sample 2 predict Sample 1 predict Sample 2

  0 0.148 0.267 0.146 0.264
  3 0.181 0.281 0.166 0.257
  6 0.200 0.333 0.143 0.239
  9 0.212 0.340 0.152 0.245
12 0.261 0.344 0.154 0.203
32 0.480 0.476 0.104 0.104
52 0.660 0.740 0.047 0.053
97 1.000 1.000 0.034 0.034



8

Overfitting Leads to Invalid Inferences

Regression Results with 12 Extraneous Predictors
Sample 1:  R2 = 0.261

Estimate Std. Error p-value
(Constant) 0.04 0.11 0.75

z1 0.27 0.13 0.04
z2 0.38 0.13 0.00
z3 0.11 0.13 0.40
z4 -0.08 0.11 0.48
z5 0.19 0.12 0.11
z6 0.00 0.12 0.98
z7 -0.10 0.12 0.39
z8 -0.13 0.12 0.28
z9 -0.06 0.11 0.58

  z10 0.01 0.11 0.93
  z11 -0.12 0.12 0.33
  z12 0.10 0.10 0.31
  z13 0.22 0.11 0.05
  z14 0.11 0.13 0.39

This sample #1 model containing 12 extraneous predictors incorrectly implies that higher levels of 
Z3, Z5, Z12-Z14 and lower levels of Z4, Z7, Z8 and Z11 will yield a higher Y.

The estimates for α, β1 and β2
are close to the correct values.

The out-of-sample prediction problem 
occurs by allowing irrelevant variance 
associated with the extraneous effects to 
contribute to the model. When the number 
of extraneous predictors is larger, the 
problem becomes worse as the irrelevant 
variance dominates the model.
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Summary and Implications of Results

• In this simulated example involving fixed effects regression, K regression 
coefficients were freely estimated although only 2 were non-zero. For 
moderate amounts of overfitting (K >15), out-of-sample performance 
begins to deteriorate.

• In practice, the true underlying structure is unknown. If a model is applied 
that fits the data and reduces the number of parameters, the likelihood of 
overfitting is reduced.

• In random effects regression, it is more important to impose a parsimonious 
model structure because there are many more parameters, and hence the 
potential for overfitting is a larger problem.  

• Unlike fixed effects models, with random effects models it is not possible to 
apply the model parameters to a ‘hold-out’ sample without making strong 
assumptions about the nature of the random effects.  Thus, there is no 
direct way to estimate the magnitude of overfitting.
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How Many Model Parameters?

• In fixed effects linear regression, there are K+2 model parameters: K+1 
regression coefficients α, β1, β2, …, βK and error variance σ2. 

• In random effects linear regression, individual-level α, and β coefficients 
are estimated for each case i:

Yi = αi + β1iZ1 + β2iZ2 + β3iZ1 + … + βKiZK + εi

Thus, in addition to K+2 parameters as in the fixed effects model      
(means of α and βs, now called ‘hyper-parameters’ plus σ2), additional 
hyper-parameters must be estimated based on the assumed distribution of 
the random effects α and βs. Typically it is assumed that (α, β) follow the 
MVN distribution, which means that there are an additional (K+2)(K+1)/2 
hyper-parameters in the variance-covariance matrix that must be estimated.

• The individual-level coefficients are derived from estimates of the hyper-
parameters.
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The Hierarchical Bayesian Approach

• Bayesian methods (HB) are often used to estimate random effects 
regression models. Typically, this is done without imposing constraints on 
the hyper-parameters. This can yield a very large number of parameters to 
be estimated. For example, for K=12, there are 105 parameters!

• One way to reduce the number of parameters, is to allow for the possibility 
that only some of the effects are random, the others fixed – i.e., mixed 
models. For example, a random intercept model is one where individual-level 
coefficients are obtained for α only, the βs being estimated as fixed effects. 
For K=12, the random intercept model contains only 14 parameters.

• When the βs are also treated as random effects, a parameter reduction can 
be achieved by superimposing a factor-analytic structure on the variance-
covariance matrix (CFactor models). If the number of CFactors is sufficiently 
small, maximum likelihood estimation becomes feasible.
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Continuous Factor Models

• Random (mixed) effects models can be re-parameterized in terms of 
continuous factors (CFactors) by superimposing a factor-analytic structure         
with  P ≤ K+1 CFactors on the random coefficients*.
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The means of the individual coefficients are 
represented by α0 and β0

The random effects are represented by λs. 
Thus, for example, VAR(βi1) = λ11

2 + λ21
2

Note that λ12 = λ22 = 0 implies that                                
is a fixed effect.

Factor-Analytic Structure:

2 02iβ β=

∗ Skrondal and Rabe-Hesketh, 2004; Vermunt and Magidson, 2005

• For example, for K=3 predictors and P=2 CFactors F1 and F2:
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Example 1: Conjoint with Soft Attributes

• Products: T = 15 crackers

• Consumers: n=157 (category users)
– evaluated all products over three days
– Y = 9-point liking scale RATING (dislike extremely like extremely)  
– completely randomized block design balanced for the effects of 

day, serving position, and carry-over

• Sensory attribute evaluations: trained sensory panel (n=8)
– 18 flavor, 20 texture, and 14 appearance attributes rated on    

15-point intensity scales (low high)
– reduced (via PCA) to four appearance, four flavor, and four texture 

factors – Z1, Z2, …, Z12      (K=12)
– For this presentation, the client requires that these attributes be 

named only as App1-4, Flv1-4 and Tex1-4.
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CFactor Regression Data Layout

There are 15 records per case. The repeated measures regression predicts the RATING for the 15 
crackers as a linear function of the 12 sensory attributes. 
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Estimating Random Effects Regression Models 
Unconstrained HB Approach

• Allow for continuous heterogeneity*

. 1 1 2 2 ....i t i i i iK K i tY Z Z Zα β β β ε= + + + + + Yi.t = case i’s rating of product t

Unconstrained HB** approach:
• Assumes these random coefficients follow a MVN distribution
• Uses Bayesian methods for estimation

• In the example, the number of parameters is computed as follows:                 

13 means + 13 standard deviations +       = 78 correlations + 1 error variance
= 105 free parameters to be estimated (a large number)

*   For simplicity, we omit quadratic terms.                    
** We used Gauss to estimate the HB models presented here. 

13

2

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Estimating Random Effects Regression Models 
General CFactor Approach

. 1 1 2 2 ....i t i i i iK K i tY Z Z Zα β β β ε= + + + + + Yi.t = case i’s rating of product t

CFactor Model fitting strategy * :
• Assumes these coefficients follow a MVN distribution
• Superimposes a factor-analytic structure on the regression coefficients
• Uses maximum likelihood estimation
• Uses information criteria (e.g., BIC) to determine number of CFactors
• Uses Wald tests to determine whether to restrict loadings to 0

• In the example, the final model contained only 2 CFactors -- 1 CFactor for 
the (random) intercept, and a 2nd associated with the attribute effects.

The number of parameters were reduced from 105 to 19 !!!
13 means + 13 loadings +1 factor correlation + 1 error variance**

- 9 nonsignificant parameters set to 0 (1 mean and 8 loadings).

* We used Latent GOLD 4.0 (Vermunt and Magidson, 2005) to estimate the CFactor Model. Such 
models could also be estimated using the program gllamm (Skrondal and Rabe-Hesketh, 2004).

** Additional CFactor models allowing separate error variances for each product t were also evaluated.
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Model Comparisons

BIC is Best for Our Final Restricted 2-CFactor Model

BIC suggests that more than 2-CFactors and/or additional error variances were not required. 
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Results from 3 Regression Models

• While the HB Regression R2 is quite high, since it is based on 105 
parameters, a substantial amount of shrinkage is possible if results 
were to be applied to an ‘exchangeable’ sample.

By setting the corresponding λs to 0, the CFactor model omits heterogeneity 
associated with the sensory attributes TEX1-4, FLV1-3 and APP3 as irrelevant 
variation. These are indicated above by Std Dev = 0.
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Comparison of HB and CFactor Results

• Individual coefficients estimated for α based on the HB and 
CFactor models correlate almost perfectly with each other and 
with average ratings across all 15 products (all corrs >.99).

• The HB individual coefficients for TEX4 show substantial 
amounts of  heterogeneity – the standard deviation is .31, 
which is third highest among all attributes. The CFactor model 
smooths away this heterogeneity as irrelevant variation.

• Generally, it is quite difficult to describe the heterogeneity 
obtained from an unconstrained HB model concisely. Using the 
factor structure helps. Here, since only CFactor #2 is used to 
describe the heterogeneity, this heterogeneity can be 
described quite simply in terms of differences in attribute and 
product preferences as shown on the following slides. 
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C-Factor Regression Results Indicate Fixed 
Effects on all but 4 Sensory Attributes

Attribute Fixed
Component p-value CFactor2

Effect
p-value

APP1 0.30 0.009 -.29 < 0.0001
APP2 0.77 < 0.0001 0.54 < 0.0001
APP3       -0.43 < 0.0001 0* --
APP4 0.68 < 0.0001 0.16 0.0140
FLV1 0.92 < 0.0001 0* --

FLV2 0.71 < 0.0001 0* --

FLV3 1.03 < 0.0001 0* --

FLV4       -1.04 < 0.0001 0.23 0.0003
TEX1 -0.51 0.007 0* --

TEX2 0.17 0.004 0* --

TEX3 0.38 0.002 0* --

TEX4          0* -- 0* --

• The CFactor2 effects indicate that respondents scoring high on C-Factor2 
were more favorably affected by higher values of APP2, APP4 and FLV4 
and lower values of APP1 than those scoring low on C-Factor #2.
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Comparing Ratings by Products:        
Where is the Heterogeneity?

• Maximum likelihood estimates for the CFactor scores were 
obtained and used to classify respondents into 3 segments. 
Cutpoints of -.5 and .5 were used to discretize the estimated 
CFactor2 score to form these segments

• By plotting mean product ratings separately for each segment 
it can be seen how the CFactor2 heterogeneity translates into 
differences in relative preferences for one cracker product 
over another.  In addition, such plots can be developed using 
observed as well as predicted ratings to see the extent to 
which the observed differences are captured in the model.

Note: Predicted ratings for those in the middle segment were 
similar to ratings predicted by the aggregate (fixed effects) 
model for all consumers.
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Comparisons of Product Ratings by Segment 
Average Observed Ratings

Consumers in the high CFactor2 segment were significantly more likely to 
prefer crackers #376, #495, #821, and #967 and significantly less likely to 
prefer cracker product #342 than those in the low CFactor2 segment.

CFactor Segments
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Comparisons of Product Ratings by Segment    
Average Predicted Ratings -- CFactor Model 

These predicted ratings capture the major segment differences shown in the observed data

CFactor Segments
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Comparisons of Product Ratings by Segment
Average Predicted Ratings -- HB Model

Average predicted HB ratings show similar patterns as the CFactor model predictions with 
respect to this CFactor2 type of heterogeneity.

CFactor Segments

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

ra
tin

g.
81

2
ra

tin
g.

68
2

ra
tin

g.
95

1
ra

tin
g.

49
5

ra
tin

g.
54

8
ra

tin
g.

41
0

ra
tin

g.
37

6
ra

tin
g.

34
2

ra
tin

g.
60

3
ra

tin
g.

11
7

ra
tin

g.
82

1
ra

tin
g.

96
7

ra
tin

g.
13

8
ra

tin
g.

23
1

ra
tin

g.
75

5

Products

H
B

 P
re

d
ic

te
d

 R
at

in
g

s

Low CFac2

Mid CFac2

High CFac2



25Example 2: Checking Account Preferences:     
Select most and least preferred from each set *

* These data were restructured from a full ranking of all 9 alternatives (Kamkura, et. al., 1994).

Fewer parameters than example #1 -- only 5 beta parameters: 1 each 
for MinBalance, Cost/Check and Fee, and 2 for the nominal variable ATM
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Restricted 2-CFactor Model is Preferred by BIC

*Percent of first-choice hits in selection from all 9 alternatives.
Note: The restricted 2-CFactor model took 5 seconds to estimate using Latent GOLD 4.0 on a 2 gigahertz 
PC compared to over 1 hour for the HB model estimated using the standard software
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C-Factors Structure the Heterogeneity

Attribute Fixed
Component

CFactor1
Effect

CFactor2
Effect

MIN BAL -3.99 -2.07 1.43
Cost per Check -7.74  6.05 0*

Monthly Fee       - 0.40 0* 0*
ATM:
Fee = $.75 /use - 0.39 0*   0.34

Free   1.19 0*   0.69

N/A - 0.80 0* -1.03

• Some consumers are more willing than others to trade off the minimum 
balance requirement against the cost per check (CFactor 1), while others 
are more willing than others to trade off the minimum balance 
requirement against ATM availability (CFactor 2).

• All consumers prefer less minimum balance requirements, lower costs per
check, lower  monthly fees and inexpensive access to ATMs.
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Conclusions

• In the examples considered here, the inclusion of CFactors provided a 
parsimonious alternative to the standard (unrestricted) use of HB with 
fewer than 3 C-Factors required.

• With a large number of parameters as in example #1, the results suggest 
that HB may provide a substantial amount of overfitting, which can be 
reduced considerably using CFactors to structure the heterogeneity.

• When the number of parameters is fairly small, as in example #2, results 
suggest that the amount of overfitting in HB may be minimal. However, 
even with few parameters, the structure added by CFactors was found to 
simplify the interpretation of the heterogeneity by a substantial margin.

• The use of CFactors in choice models may provide a substantial reduction 
in estimation time over HB *.

* This conclusion is based on comparisons between Latent GOLD 4.0 (for CFactor models) and 
Gauss (for HB). Estimation of CFactor models using gllamm was found to be much slower.
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APPENDIX
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CFactor Regression Model with Random Intercept 
and Continuous Random Product Attribute Effects
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where: Yi.t is case i’s rating for product t with attributes Z1,Z2,…,ZK

C-Factor Fi1 is associated with the intercept

C-Factor Fi2 is associated with the K product attribute effects
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