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The Use of Restricted Latent Class Models

for Defining and Testing Nonparametric and

Parametric Item Response Theory Models

Jeroen K. Vermunt

Tilburg University

A general class of ordinal logit models is
presented that specifies equality and inequality
constraints on sums of conditional response probabil-
ities. Using these constraints in latent class analysis,
models are obtained that are similar to parametric
and nonparametric item response models. Maximum
likelihood is used to estimate these models, making
their assumptions testable with likelihood-ratio statis-
tics. Because of the intractability of the asymptotic
distribution of the goodness-of-fit measure when

imposing inequality constraints, parametric boot-
strapping is used to obtain estimates of p values. The
proposed restricted latent class models are illustrated
by an example using reported adult crying behavior.
Index terms: inequality constraints, nonparametric
item response theory, order-restricted inference,
parametric bootstrapping, polytomous item response
theory, restricted latent class analysis, stochastic
ordering.

Two similarities exist between latent classmodels (LCMs) and item response theory (IRT) models.

One is that order-restricted LCMs can be used to estimate nonparametric IRTmodels with maximum

likelihood (ML; Croon, 1990, 1991) and Bayesian methods (Hoijtink & Molenaar, 1997). These

methods specify simple inequality restrictions on the cumulative conditional response probabilities

[item step response functions (ISRFs)]. There is also a similarity between loglinear LCMs and

parametric IRT models (Heinen, 1996)—discretized variants of the most important parametric IRT

models can be obtained by placing constraints on the loglinear parameters of LCMs.

Purpose

This paper integrates and extends these developments using a general class of loglinear equal-

ity and inequality constraints on ISRFs. The approach is based on work in generalized loglinear

modeling (Bergsma, 1997; Lang & Agresti, 1994) and order-restricted inference with categorical

variables (e.g., Dardanoni & Forcina, 1998; Robertson, Wright, & Dykstra, 1988; Vermunt, 1999).

Restrictions of these forms can be used not only to specify nonparametric IRT models (e.g., the

monotone homogeneity model for polytomous items; Molenaar, 1997), but also to define nonpara-

metric variants of most parametric IRTmodels for polytomous items. Hybrid IRTmodels combining

parametric with nonparametric features also can be obtained.

Ordinal Dependent and Independent Variable Models

Four Types of Odds/ISRFs

An empirical example taken from the Adult Crying Inventory (Becht, Poortinga, &Vingerhoets,

in press) illustrates the logit models for ordinal independent and dependent variables. Table 1 is
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a two-way cross-tabulation of two ordinal variables—one from the “Crying From Distress” scale

(collapsed into five categories of relatively equal size) and the questionnaire item “Feeling Relieved

After Crying” (from a different scale), denoted X and Y , respectively. X contains I levels, and Y

contains J levels, where I = 5 and J = 3. Their respective category indices are denoted i and j .

Table 1
Observed Cross-Classification of “Crying
From Distress” and “Feeling Relieved
After Crying” (1 = Low, 5 = High)

Feeling Relieved
Crying From After Crying

Distress Less Same More

1 61 195 438
2 78 158 581
3 38 102 518
4 46 119 572
5 53 106 597

Assume that X is the independent variable and Y the dependent variable. Interest is then on the

conditional distribution of Y, given X. The question is then whether persons who more frequently

cry experience more benefits from crying—whether there is a positive relationship between X

and Y .

The standard way to model this relationship of ordinal variables is through a logit model that

imposes equality constraints on odds ratios. For this purpose, four types of odds can be used

(Agresti, 1990, Section 9.3; Mellenbergh, 1995):

cumulative odds,

�cum
i,j = P(Y ≤ j − 1|X = i)/P (Y ≥ j |X = i) , (1)

adjacent category (local) odds,

�
adj
i,j = P(Y = j − 1|X = i)/P (Y = j |X = i) , (2)

continuation odds Type 1,

�conI
i,j = P(Y = j − 1|X = i)/P (Y ≥ j |X = i) , (3)

or continuation odds Type 2,

�conII
i,j = P(Y ≤ j − 1|X = i)/P (Y = j |X = i) , (4)

where 2 ≤ j ≤ J and 1 ≤ i ≤ I . �i,j is used below as a generic symbol referring to any of these

odds.

Modeling a certain type of odds corresponds to modeling a certain ISRF type. Initially, it is

assumed here that there is no latent trait, but instead conditioning is based on a summated scale

score, X. The ISRFs corresponding to the four types of odds (Mellenbergh, 1995; van der Ark,

2001) are

ISRFcum
i,j = P(Y ≥ j |X = i) , (5)
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ISRF
adj
i,j = P(Y = j |X = i)

P (Y = j |X = i)+ P(Y = j − 1|X = i)
, (6)

ISRFconI
i,j = P(Y ≥ j |X = i)

P (Y ≥ j − 1|X = i)
, (7)

and

ISRFconII
i,j = P(Y = j |X = i)

P (Y ≤ j |X = i)
. (8)

ISRFcum
i,j , the cumulative odds, is used in graded response models (GRMs), ISRF

adj
i,j is used in partial

credit models (PCMs), and ISRFconI
i,j is used in sequential models. (For a more detailed explanation

of these ISRFs, see van der Ark, 2001.)

ISRFconII
i,j differs from ISRFconI

i,j with respect to the order in which persons are assumed to evaluate

the response variable categories. If �conI
i,j is used, it is assumed that persons evaluate the response

alternatives from low to high. If �conII
i,j is used, it is assumed they are evaluated from high to low.

In practical research situations, a choice must be made between these four types of odds/ISRFs.

A model must be specified for the type of odds/ISRF that best fits the assumed process underlying

the responses. Here, all four types are used in order to illustrate the generality of the approach.

Parametric Models

A logit model that takes into account that the dependent and independent variables are ordinal

is (Agresti, 1990)

log�i,j = αj − βxi , (9)

where

xi is the fixed score assigned to category i of X,

αj is the intercept of the logit model, and

β is the slope of the logit model.

In most cases, xi assumes equal intervals (e.g., 1, 2, 3, 4), but other scoring schemes also can be

used for X. The ISRF model corresponding to Equation 9 is

ISRFi,j =
exp(αj + βxi)

1+ exp(αj + βxi)
. (10)

Note that the ISRFs are assumed to have equal slopes. This implies that, with ISRF
adj
i,j for instance,

a model similar to a PCM is obtained. However, X is an observed variable, not a latent trait. When

equal-interval xi is used, the model described in Equation 9 implies that the log-odds ratios between

adjacent levels of X are assumed to be constant,

log�i,j/�i+1,j = log�i,j − log�i+1,j = β , (11)

for all i and j . These differences between log odds do not depend on the values of X and Y ; this

can be expressed by the equality constraints

(log�i,j − log�i+1,j )− (log�i,j+1 − log�i+1,j+1) = 0 , (12)
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and

(log�i,j − log�i+1,j )− (log�i+1,j − log�i+2,j ) = 0 . (13)

The restrictions implied by standard ordinal logit models also can be defined in terms of equalities

on the log-odds ratios—themodel parametersαj andβ are eliminated (this is used in the constrained-

optimization procedure described below).

Table 2 reports the observed log-cumulative-odds ratios for the data from Table 1. Note that a

log-odds ratio larger than 0.0 is in agreement with the postulated positive relationship between X

and Y . The data in Table 2 contain four violations of ordinal relationships. It should be determined

whether these were the result of sampling fluctuation.

Table 2
Log-Cumulative-Odds Ratios of

“Feeling Relieved After Crying” for
Adjacent Categories and “Crying From
Distress” (Collapsed Into Five Levels)
Observed and Estimated Under the

Constraints of Equation 14

Feeling Relieved After Crying

Crying From Less vs. Less/Same
Distress Same/More vs. More

1 vs. 2 −.09/.00 .36/.39
2 vs. 3 .54/.40 .41/.34
3 vs. 4 −.08/.00 −.07/.00
4 vs. 5 −.12/.00 .08/.10

Table 3 reports test results for the estimatedmodels. The independencemodel test statistic shows

a significant association between the two variables. None of the logit models using the constraints

(Equations 12 and 13) fit the data. Thus, the parametric assumptions of the standard ordinal logit

models are too restrictive for this dataset.

Table 3

G2, df , and p for Ordinal Logit
Models Estimated With Crying Data for
Parametric Models (Restrictions From
Equations 12 and 13) and Nonparametric
Models (Restrictions From Equation 14)

Model G2 df p

Independence 76.6 8 .00

Parametric
Cumulative (GRM) 23.2 7 .00

Adjacent (PCM) 34.0 7 .00

Continuation I (SRM) 21.7 7 .00

Continuation II (SRM) 39.6 7 .00

Nonparametric
Cumulative (GRM) 1.3 4 .56

Adjacent (PCM) 7.3 5 .14

Continuation I (SRM) 1.3 4 .58

Continuation II (SRM) 7.3 5 .11
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Nonparametric Models

The equalities implied by the above logit model can be replaced by inequalities. The approach

then becomes nonparametric, rather than parametric. This yields a less-restrictive definition of a

positive log-odds ratio relationship,

log�i,j − log�i+1,j ≥ 0 . (14)

It has been assumed that all log-odds ratios are at least 0.0. Such a set of constraints is referred to

as: simple stochastic ordering; likelihood ratio ordering; or uniform stochastic ordering for cumu-

lative, adjacent category, and continuation odds (Dardanoni & Forcina, 1998). The nonnegativity

constraint on the log-odds ratios can also be formulated in terms of constraints on the ISRFs (van

der Ark 2001). That is,

ISRFi,j ≤ ISRFi+1,j . (15)

These constraints are special cases of a more general class of equality and inequality constraints

(see below). Hybrid ordinal logit models can be obtained by combining inequality and equality

restrictions. For example, combining the restrictions in Equation 14 with those in Equation 13

yields a model with monotonically decreasing odds; the decrease is constant between adjacent

values of X.

Models using the inequality constraints defined in Equation 14 were estimated for the empirical

dataset. Table 3 gives results for the four order-restricted models. As can be seen, the order-

restricted nonparametric models fit much better than the parametric logit models. Thus, there was

no evidence against a monotonic relationship between X and Y . The choice between the four

nonparametric models should not depend only on the fit of the models, but also on the plausibility

of the assumed process generating the responses.

As shown in Table 2, using inequality constraints leads to certain log-odds ratios of 0.0. Similar

results for the other three types of log-odds ratios are not presented.

LCMs for Ordinal Items

Unrestricted LCMs

Assume an LCM with a single latent trait X and K items denoted Yk , where 1 ≤ k ≤ K . The

number of latent classes [levels of the (discretized) latent trait] is I , the number of levels of item

Yk is Jk , and i and jk are specific levels of X and Yk , respectively.

In an LCM, it is assumed that items are independent of each other within latent classes (i.e, local

independence; see, e.g., Bartholomew & Knott, 1999; Goodman, 1974). An LCM with a single

latent variable is

P(Y1 = j1, Y2 = j2, . . . , YK = jK ) =
I

∑

i=1
P(X = i)

K
∏

k=1
P(Yk = jk|X = i) , (16)

where P(X = i) is the unspecified distribution of the latent trait, and P(Yk = jk|X = i) are the

item response probabilities. In a standard LCM, no restrictions are imposed on these probabilities.

Parametric Models

To obtain a monotone relationship between X and Yk , the logit constraints described above

are used. For example, the equality restrictions in Equations 12 and 13 can be imposed on the

ISRFs obtained with P(Yk = jk|X = i). Denoting the odds for item k by �k
i,j , these equality

constraints are
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(

log�k
i,j − log�k

i+1,j
)

−
(

log�k
i,j+1 − log�k

i+1,j+1
)

= 0 , (17)

and
(

log�k
i,j − log�k

i+1,j
)

−
(

log�k
i+1,j − log�k

i+2,j
)

= 0 . (18)

Equation 17 results in category-independent odds ratios for item k, and Equation 18 makes them

class independent.

Heinen (1996, pp. 120–133) showed that an LCM for polytomous items with restrictions on

the adjacent category log-odds ratios (such as those in Equation 18) yields a model similar to the

nominal response model (Bock, 1972). Heinen also demonstrated that when the constraints in

Equations 17 and 18 are used at the same time, a discretized variant of the PCM (Masters, 1982)

with item-specific slopes is obtained. This is usually referred to as the generalized PCM (Muraki,

1992). These constraints imply that

ISRFk
i,j =

exp(αk
j + βkxi)

1+ exp(αk
j + βkxi)

. (19)

These types of constraints can be used on the cumulative and continuation odds as well as the

adjacent category odds. This yields discretized variants of the GRM (Samejima, 1969) and the

sequential response model (SRM; Mellenbergh, 1995; Tutz, 1990). The only difference between

a parametric IRT model and the corresponding restricted LCM is that the distribution of the trait is

described by a small number of points (classes) with unknown weights (sizes), rather than by a

known distributional form.

Parametric IRT models are often estimated using marginal ML, in which normal quadratures

are used to solve the integrals appearing in the likelihood function. This implicitly assumes a

discretized latent variable. Rasch models are usually estimated by conditional ML, which involves

conditioning on the (discrete) total score. Lindsay, Clogg, & Grego (1991) showed that equivalent

estimates can be obtained for the Rasch model and a restricted LCM.

Nonparametric Models

Monotonicity can also be obtained using the inequality constraints in Equation 14 on the various

log-odds ratios. When translated into the LCM context, these become

log�k
i,j − log�k

i+1,j ≥ 0 , (20)

which indicates that�k
i,j decreases or remains equal as i increases. Croon (1990, 1991) andHoijtink

& Molenaar (1997) proposed using such constraints with cumulative odds, yielding a discretized

variant of the nonparametric GRM (Hemker, Sijtsma, Molenaar, & Junker, 1997), also known as

the polytomous monotone homogeneity model (Molenaar, 1997). The more general approach

presented here allows the use of nonnegative log-odds ratio restrictions on the adjacent category

and continuation odds, yielding nonparametric variants of the PCM and SRM.

Models With Between-Item Constraints

In addition to the restrictions within items on ISRFs, it might be relevant to use equality or

inequality constraints between items. The most relevant inter-item equality restriction is
(

log�k
i,j − log�k

i+1,j
)

−
(

log�`
i,j − log�`

i+1,j
)

= 0 , (21)
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which essentially equates the discrimination parameters of items k and `. That is, βk = β`. The

most relevant inequality constraint across items is

log�k
i,j − log�`

i,j ≥ 0 , (22)

which specifies that item k is easier than item ` for latent class i. Using these constraints on all

item pairs (k, `) in combination with the inequality constraints described in Equation 20 yields

a more-restricted variant of the polytomous monotone homogeneity model (the model of strong

double monotonicity; Sijtsma & Hemker, 1998).

Extensions

It is also possible to combine parametric and nonparametric features. For example, combining

Equation 20 with Equation 17 yields a model with category-independent odds ratios combined

with ordered latent classes. When combined with adjacent-category odds, such a hybrid model

has the form of an ordered-restricted row-association structure (Agresti, Chuang, & Kezouh, 1986;

Vermunt, 1999).

Several interesting extensions are straightforward within the latent class framework developed

here. The most important are models with several latent traits, models with covariates, and models

with local dependencies. Each of these extensions can be implemented using the framework

introduced here.

Model Estimation and Testing

Equality Constraints

Parameter estimation that is less straightforward than ML estimation of standard ordinal logit

models is usefulwhenworkingwith inequality constraints. Themethodused is based ongeneralized

loglinear modeling (also known as marginal modeling; Bergsma, 1997; Lang & Agresti, 1994).

The estimation of the probabilities P(Y = j |X = i) or πj |i is defined as a restricted optimization
problem. The rth restriction on πj |i is

∑

t

crt log
∑

ij

aij tπj |i = 0 , (23)

where

aij t , taking on the value of 1 or 0, defines the appropriate sums of probabilities on which the

odds are based,

t is the index used to denote the t th sum, and

crt defines the relevant linear restrictions on the log-odds ratios (e.g., those in Equations 12

and 13).

Assuming a multinomial sampling scheme, ML estimation involves finding the saddle point of the

following Lagrange equation (Gill & Murray, 1974)

L =
∑

ij

nij logπj |i +
∑

i

γi





∑

j

πj |i − 1



+
∑

r

λr





∑

t

crt log
∑

ij

aij tπj |i



 , (24)

where γi and λr are Lagrange multipliers, and nij is an observed cell frequency.

Bergsma (1997) andLang&Agresti (1994) provided two slightly different versions of theFisher-

scoring algorithm to solve this problem. Vermunt (1999) proposed a simple unidimensionalNewton
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method that can be used for a more limited class of restrictions. For more general information on

algorithms for constrained optimization, see Gill & Murray (1974).

Inequality Constraints

Estimation with inequality constraints is very similar to that with equality constraints. The sth

inequality constraint is

∑

t

dst log
∑

ij

aij tπj |i ≥ 0 . (25)

ML estimation involves finding the saddle point of

L =
∑

ij

nij logπj |i +
∑

i

γi





∑

j

πj |i − 1



+
∑

r

λr





∑

t

crt log
∑

ij

aij tπj |i





+
∑

s

δs





∑

t

dst log
∑

ij

aij tπj |i



 , (26)

where δs ≥ 0, and δi , λr , and γt are Lagrange multipliers.

The only difference between the situation with inequality constraints and that with equality

constraints is that the Lagrange multipliers belonging to the inequality constraints must be at least

0.0. An inequality constraint is activated only if it is violated.

In practice, estimation can be accomplished by transforming the Fisher-scoring algorithm

(Bergsma, 1997; Lang & Agresti, 1994) into an active-set method. Vermunt (1999) showed how to

transform a simple unidimensional Newton algorithm for ML estimation with equality constraints

into an active-set method. At each iteration cycle in active-set methods, the inequality restrictions

that are no longer necessary (i.e., if ds < 0) are deactivated. Those that are violated are activated.

More general information on algorithms for optimization under equality and inequality constraints

can be found in Gill & Murray (1974).

Restricted LCMs

Let πk
jk |i be P(Yk = jk|X = i). In latent class analysis, the equality and inequality restrictions

used are special cases of the general form

∑

k

∑

t

ck
rt log

∑

ijk

aijk tπ
k
jk |i = 0 , (27)

and

∑

k

∑

t

dk
st log

∑

ijk

aijk tπ
k
jk |i ≥ 0 , (28)

where

aijk t specifies the relevant sums of probabilities, making it straightforward to switch from one

type of log odds to the other;

ck
rt is the linear equality constraint on logs of sums of probabilities; and

dk
st is the inequality constraint on logs of sums of probabilities.
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The first sum over items makes it possible specify between-item constraints.

Estimation can be performed by implementing the Fisher-scoring active-set method in the max-

imization (M) step of an EM algorithm (Dempster, Laird, & Rubin, 1977). This is similar to what

Croon (1990, 1991) did with a pooling adjacent violators algorithm, which is a method for dealing

with certain types of inequality restrictions. Vermunt (1999) proposed an EM algorithm which

implements an active-set algorithm based on a unidimensional Newton algorithm in the M step.

An advantage of model estimation with the EM algorithm is that in the M step, the same types

of estimation methods can be used as if the latent variable were observed. The expectation (E) step

of the EM algorithm is very simple in LCMs.

Computer time for model estimation generally is not a problem for models with large numbers

of items (e.g., 50 or 100)—estimation never takes more than a few minutes, as with parametric

IRT models. It is well-known that the loglikelihood function of LCMs might be multimodal; this

problem typically becomes worse when imposing inequality constraints. A practical solution is to

run the same model with multiple (e.g., 10) sets of random starting values. Within a bootstrap (see

below), the best procedure seems to be to start the estimation from the ML estimates.

Model Testing

Let H1 be the hypothesized order-restricted model and H0 the more restrictive model obtained

by transforming all inequality restrictions into equality restrictions. These could, for instance, be

nonnegative log-odds ratios (H1) and independence (H0). Whether H1 fits the data can be tested

using a standard likelihood-ratio statistic,

G2 = 2
∑

ij

nij ln

(

π̂j |i
pj |i

)

, (29)

where π̂j |i and pj |i denote estimated and observed probabilities, respectively. A complication in
using this test statistic is, however, that it is not asymptotically χ2 distributed. It has been shown

that it follows a χ̄2 (rather than a χ2) distribution, which are weighted sums of χ2 distributions

when H0 holds (e.g., Robertson et al., 1988, p. 321).

Let S denote the number of inequality constraints, which is also the maximum number of

activated constraints. The p value can be estimated as

P(G2 ≥ c) =
S

∑

s=0
P(s)P

[

χ2(s) ≥ c
]

, (30)

that is, as a weighted sum of asymptotic p values where the probability of having s activated

constraints, P(s), serves as a weight. This shows that it must be taken into account that the number

of activated constraints is a random variable. A problem associated with Equation 30, however, is

that the computation of the P(s)s is—except for some trivial cases—extremely complicated.

The p values for the test statistic can be estimated using parametric bootstrapping based on

monte carlo studies. This relatively simple method, which involves empirically reconstructing

the sampling distribution of the test statistic of interest, is followed here. Ritov & Gilula (1993)

proposed such a procedure in ML correspondence analysis with ordered category scores. Their

simulation study showed that parametric bootstrapping yields reliable results when applied in

these models, which are special cases of the order-restricted LCMs presented here. Langeheine,

Pannekoek, & van de Pol (1996) proposed using bootstrapping in categorical data analysis for

dealing with sparse tables, which is another situation in which asymptotic theory cannot be relied
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upon for the test statistics. Agresti & Coull (1996) used monte carlo studies in combination with

exact tests to determine the goodness of fit of order-restricted binary logit models estimated with

small samples.

In the parametric bootstrap procedure, T frequency tables with the same number of observations

as the original observed table are simulated from the estimated probabilities under H1. For each of

these tables, H1 is estimated and the value of G2 is computed. This yields an empirical approxi-

mation of the distribution of G2. The estimated p value is the proportion of simulated tables with

a G2 that is at least as large as for the original table. The standard error of the estimated p value is√
p(1− p)/T .

Example Application

Four items from “Crying From Distress” (Becht et al., in press) were used to illustrate the

various types of LCMs for ordinal items: (1) “I cry when I feel frightened,” (2) “I cry when I am in

despair,” (3) “I cry when I feel rejected by others,” and (4) “I cry when I feel that I am in a blind-

alley situation.” The original seven-point scale (where 1 = never and 7 = always) was collapsed

into three levels: 1–2, 3–5, and 6–7. Data were available for 3,821 respondents. p values were

estimated using 1,000 bootstrap samples, with T = 1,000.
Table 4 reports the test results for the estimated unrestricted and restricted LCMs. As shown by

the goodness-of-fit tests, the unrestricted four-class model best fit the data. The difference between

G2 values (likelihood-ratio statistics) for the three- and four-class models (1G2 = 33.4) was clearly

significant with an estimated bootstrap p value of 0.0. The four-class model contained only a few

order violations—an indication that it captured a single dimension in the items. The four-class

model was retained as a basis for testing the validity of the restrictions corresponding to parametric

and nonparametric IRT models.

Table 4 also shows test results for the four discretized parametric IRT models obtained by spec-

ifying four-class models with the equality constraints in Equations 17 and 18 on the four types of

odds. This amounted to restricting the ISRFs to the same slope (see Equation 19). The reported p

values show that none of these models fit the data well, indicating that the constraints implied by

parametric IRT models were too restrictive for this dataset.

Table 4 reports the goodness-of-fit measures for four-class nonparametric LCMs with the inequal-

ity constraints in Equation 20. [For the order-restricted models, the reported degrees of freedom

(df ) were 45 plus the number of activated constraints.] Each fit the data at the .05 level. The GRM

G2 was lowest, the PCMG2 value highest, andG2 for the two SRMs were in the mid-range. This was

expected because of the hierarchy among the inequality constraints: the inequality constraints on

the adjacent category odds imply the inequality constraints on the two types of continuation odds

and the cumulative odds, and the inequality constraints on one of the two types of continuation

odds imply the inequality constraints on the cumulative odds (Hemker et al., 1997; van der Ark,

2001).

The double monotonicity models based on Equations 20 and 22 (nonparametric four-class mod-

els) fit the data well (all p > .05). In the GRM, no additional constraints are activated by the data

compared to the model of monotone homogeneity. This is seen in the reported df : they were equal

for the two nonparametric GRMs. When applying the strong double monotonicity restrictions on

the adjacent category and continuation odds, additional constraints are activated by the data.
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Table 4

G2, df , and p for LCMs Estimated
With “Crying From Distress” Data for

Unrestricted Models, Parametric Four-Class
Models (Restrictions of Equations 17 and 18),
Nonparametric Four-Class Models (Restrictions
of Equation 20), and Nonparametric Four-Class
Models (Restrictions of Equations 20 and 22)

Model G2 df p

Unrestricted
One class 4597.5 72 .00

Two class 871.2 63 .00

Three class 86.8 54 .01

Four class 53.4 45 .28

Parametric four-class
Cumulative (GRM) 187.2 65 .00

Adjacent (PCM) 223.9 65 .00

Continuation I (SRM) 202.3 65 .00

Continuation II (SRM) 212.5 65 .00

Nonparametric four-class
Cumulative (GRM) 56.4 48 .28

Adjacent (PCM) 69.2 52 .07

Continuation I (SRM) 61.7 51 .23

Continuation II (SRM) 60.2 47 .17

Nonparametric four-class
(double monotonicity)
Cumulative (GRM) 56.4 48 .30

Adjacent (PCM) 69.8 53 .08

Continuation I (SRM) 62.0 53 .24

Continuation II (SRM) 60.6 50 .16
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