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Linear Logistic Scoring Equations for Latent Class and Latent Profile 

Models: A Simple Method for Classifying New Cases 

 

Abstract 

 

Researchers are often interested in using latent class or latent profile parameter estimates to 

obtain posterior class membership probabilities for observations other than those of the original 

sample. In this paper, we demonstrate that these probabilities typically take on the form of linear 

logistic equations with coefficients which are functions of the original model parameters. In 

other words, the posterior class membership probabilities can be computed with a prediction 

formula similar to that of a multinomial logistic regression model. We derive the scoring 

equations for nominal, ordinal, count, and continuous indicators, as well as investigate models 

with missing values on class indicators, local dependencies, covariates, or multiple latent 

variables. In addition to the mathematical derivations of the scoring equations, we describe how 

either exact or approximate scoring equations can be obtained by estimating a multinomial 

regression model using a weighted data set. 

 

Keywords: Posterior class membership probabilities, Classification, Out-of-sample prediction, 

Multinomial logistic regression. 
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In applications of factor analysis, after selecting and estimating the factor model of interest, one 

will typically obtain (linear) factor-score equations which can be used to estimate the subjects' 

factor scores as a function of the original items included in the model (Bartholomew, Knott, and 

Moustaki, 2011). An important feature of factor-score equations is that these can be used not 

only for the subjects in the estimation sample, but also for new subjects, that is, for out-of-

sample prediction. 

When performing a latent class (LC) analysis, after selecting the final model, one may 

assign the individuals in the estimation sample to LCs using their posterior class membership 

probabilities. However, it is not well known that these posterior probabilities can be expressed 

exactly by a set of linear logistic equations, with “regression” weights which are functions of the 

original LC model parameters. More specifically, a closed-form expression for the posteriors 

exists, as a function of the LC model parameters, if the responses are modeled using distributions 

from the exponential family and with canonical link functions. Availability of a set of scoring 

equations makes it straightforward to compute the class membership probabilities for subjects 

which do not belong to the original sample used to estimate the LC model. In this way, one can 

realize an important goal of many LC analysis applications, namely obtaining out-of-sample 

class membership predictions. 

As far as we know, LatentGOLD (Vermunt and Magidson, 2016, 2021) is currently the 

only software for LC analysis that allows one to obtain these logistic scoring equations, both in 

tabular form and in the form of SPSS or R syntax. The aim of this paper is to show how these 

equations are derived. As will be shown, the slopes of the linear logistic scoring equations are 

obtained easily, but the expression for the intercept terms (constants) may be somewhat more 

complex. In many situations, the equations for the posteriors will contain only main effects of the 
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response variables. However, as in quadratic discriminant analysis, when a LC model for 

continuous responses assumes variances to be class specific, quadratic terms also need to be 

included, and when the LC model contains covariances/associations which are class specific, 

interactions are also required. The approach can be extended easily to LC models with covariates 

and multiple latent variables. More complicated are situations where responses contain missing 

values (in which case the constants need to be adapted to the missing data pattern), where the 

model contains direct effects of covariates on the responses (in which case the exact logistic 

form may no longer hold), and where non-canonical link functions are used (in which case there 

is no longer any direct relation between the LC model parameters and the scoring equation). 

Rather than computing the scoring equations from the LC model parameters, one can also 

obtain these equations by estimating a multinomial logistic regression model using the posteriors 

as weights, as done in the LatentGOLD Step3-Scoring option (Vermunt and Magidson, 2016, 

2021). This approach has the advantage of increased flexibility in that it is also possible to obtain 

approximate equations when exact closed-form solutions are not available, or when one prefers a 

simpler approximate set of scoring equations over more complex exact equations. 

Below, we present the scoring equations for models for categorical responses (nominal, 

ordinal, and counts), models for continuous responses, models with local dependencies, models 

with covariates, models with missing values on responses, and models with multiple latent 

variables. We also discuss how the scoring equations can be obtained using a weighted 

multinomial logistic regression analysis. 

Latent Class Models for Categorical Responses 

Let 𝑌𝑗 denote one of 𝐽 response variables (or indicators), with 1 ≤ 𝑗 ≤ 𝐽. A particular response 

for and the number of categories of the 𝑗th response variable are referred to as 𝑦𝑗 and 𝑅𝑗, 
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respectively, with 1 ≤ 𝑦𝑗 ≤ 𝑅𝑗. The probability of having a particular set of responses 𝐲 is 

denoted by 𝑃(𝐘 = 𝐲). The discrete latent variable is denoted by 𝑋, a particular latent class by 𝑘, 

and the number of classes by 𝐾. 

Nominal Responses 

The standard LC model for nominal responses has the following form (Collins and 

Lanza, 2010; Goodman, 1974a/b; Hagenaars, 1990; McCutcheon, 1987): 

𝑃(𝐘 = 𝐲) = ∑

𝐾

𝑘=1

𝑃(𝑋 = 𝑘) ∏

𝐽

𝑗=1

𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘), 

where 𝑃(𝑋 = 𝑘) is the probability of belonging to class 𝑘 and 𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘) the 

conditional probability of giving response 𝑦𝑗 on variable 𝑌𝑗 conditional on belonging to class 𝑘. 

These probabilities are often parameterized using logistic equations (Formann, 1992; Heinen, 

1996; Magidson and Vermunt, 2004); that is,  

𝑃(𝑋 = 𝑘) =
exp(𝛾𝑘)

𝐷
 

𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘) =
exp(𝛼𝑦𝑗

+ 𝛽𝑦𝑗𝑘)

𝐸𝑗𝑘
 

With 

𝐷 = ∑

𝐾

𝑘=1

exp(𝛾𝑘) 

𝐸𝑗𝑘 = ∑

𝑅𝑗

𝑦𝑗=1

exp(𝛼𝑦𝑗
+ 𝛽𝑦𝑗𝑘) 

Here, 𝛾𝑘 are intercept or constant terms in the regression model for 𝑃(𝑋 = 𝑘), and 𝛼𝑦𝑗
 and 

𝛽𝑦𝑗𝑘 are intercept and slope parameters in the regression model for 𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘). As 
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always, identifying constraints need to be imposed on the logistic parameters. Typically, they are 

either restricted to sum to 0 over classes and response categories (referred to as effect coding), or 

set to 0 for one class and one response category (called dummy coding). The terms 𝐷 and 𝐸𝑗𝑘 

are normalizing constants. 

The posterior probability of belonging to class 𝑘 conditional on response vector 𝐲, 

denoted by 𝑃(𝑋 = 𝑘|𝐘 = 𝐲), can be obtained as follows (Dias and Vermunt, 2008; Goodman, 

1974a/b): 

𝑃(𝑋 = 𝑘|𝐘 = 𝐲) =
𝑃(𝑋 = 𝑘) ∏𝐽

𝑗=1 𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘)

∑𝐾
𝑘=1 𝑃(𝑋 = 𝑘) ∏𝐽

𝑗=1 𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘)
. 

Replacing the model probabilities by their logit equations yields: 

𝑃(𝑋 = 𝑘|𝐘 = 𝐲) =

exp(𝛾𝑘)
𝐷

∏𝐽
𝑗=1

exp(𝛼𝑦𝑗
+ 𝛽𝑦𝑗𝑘)

𝐸𝑗𝑘

∑𝐾
𝑘=1

exp(𝛾𝑘)
𝐷

∏𝐽
𝑗=1

exp(𝛼𝑦𝑗
+ 𝛽𝑦𝑗𝑘)

𝐸𝑗𝑘

. 

This equation can be simplified by removing 𝐷 and 𝛼𝑦𝑗
, which are redundant because they do 

not depend on 𝑘. Moreover, the product over the 𝐽 responses can be replaced by a sum over the 

logs of the terms concerned. This yields 

𝑃(𝑋 = 𝑘|𝐘 = 𝐲) =
exp(𝛾𝑘 − ∑𝐽

𝑗=1 log(𝐸𝑗𝑘) + ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘)

∑𝐾
𝑘=1 exp(𝛾𝑘 − ∑𝐽

𝑗=1 log(𝐸𝑗𝑘) + ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘)

=
exp(𝛾𝑘

∗ + ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘)

∑𝐾
𝑘=1 exp(𝛾𝑘

∗ + ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘)

, 

where 𝛾𝑘
∗ = 𝛾𝑘 − ∑𝐽

𝑗=1 log(𝐸𝑗𝑘). Though not really necessary, the 𝛾𝑘
∗ parameters may be 

subjected to the same identifying – effect or dummy coding – constraints as the other parameters. 

The above derivation shows that the posterior class membership probabilities can be 

written as a logistic equation with slopes equal to the LC model logistic regression slopes and 

with constants equal to the logistic class constants minus the sum of the logs of the normalizing 
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constants. The more difficult part in the computation of these scoring equations is the 

computation of the constants 𝛾𝑘
∗. But, once we have the scoring equations, we can easily 

compute the class membership probabilities for any response pattern, including response patterns 

which were not available in the original data used to estimate the LC model of interest. 

It should be noted that the 𝛾𝑘
∗ terms are identical to the one-variable parameters for the 

latent classes in the log-linear formulation of the LC model proposed by Haberman (1979). In 

this formulation, the joint distribution of the 𝑋 and 𝐘, 𝑃(𝑋 = 𝑘, 𝐘 = 𝐲), is modelled as follows: 

𝑃(𝑋 = 𝑘, 𝐘 = 𝐲) =
exp(𝛾𝑘

∗ + ∑𝐽
𝑗=1 𝛼𝑦𝑗

+ ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘)

𝐹
. 

The posterior class membership probability is obtained as 𝑃(𝑋 = 𝑘|𝐘 = 𝐲) = 𝑃(𝑋 = 𝑘, 𝐘 =

𝐲)/ ∑𝐾
𝑘=1 𝑃(𝑋 = 𝑘, 𝐘 = 𝐲). As can be seen, since ∑𝐽

𝑗=1 𝛼𝑦𝑗
 and 𝐹 cancel, 𝑃(𝑋 = 𝑘|𝐘 = 𝐲) 

has exactly the form we derived above. Thus, when using Haberman's log-linear formulation, the 

constants of the scoring equations are also model parameters. However, an important 

disadvantage of this formulation is that it is computationally less efficient since parameter 

estimation involves processing the cell entries in the joint cross-tabulation of 𝑋 and all 𝑌𝑗 

variables. Therefore, this log-linear approach can be used only when the number of response 

variables is small. 

Ordinal Responses and Counts 

 In the LatentGOLD program for LC analysis (Vermunt and Magidson, 2016, 2021), 

ordinal response variables can be modeled using an adjacent-category logit model, that is, using 

a canonical link function (Agresti, 2002). More specifically, these are multinomial logit models 

in which the class-indicator association parameters are restricted as follows: 𝛽𝑦𝑗𝑘 = 𝛽𝑗𝑘𝑦𝑗; that 

is, to be nominal-by-linear (Goodman, 1979; Heinen, 1996). This implies that for ordinal 
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variables, 

𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘) =
exp(𝛼𝑦𝑗

+ 𝛽𝑗𝑘𝑦𝑗)

𝐸𝑗𝑘
. 

The same restrictions imposed on the 𝛽𝑦𝑗𝑘 parameters also apply to the scoring equations; that 

is, for ordinal variables, we replace the 𝛽𝑦𝑗𝑘 terms in the scoring equations by 𝛽𝑗𝑘𝑦𝑗. This 

shows that in the ordinal case, the class-membership logits are linear functions of the item 

responses. It should be noted that while we assumed that the category scores ranged from 1 to 

𝑅𝑗, the adjacent-category logit model allows for any type of scoring. In its more general form, 

𝛽𝑦𝑗𝑘 = 𝛽𝑗𝑘𝜈𝑦𝑗
, where 𝜈𝑦𝑗

 is the score for category 𝑦𝑗. 

When modeling ordinal variables using other (non-canonical) link functions, such as 

cumulative logit or cumulative probit link functions, exact expressions for the scoring equations 

no longer exist. As will be shown below, a possible way out is to estimate the scoring equations 

treating the response variables as either numeric or nominal predictors of class membership. 

Also for a Poisson and binomial count variable, the scoring equations contain the term 

𝛽𝑗𝑘𝑦𝑗. This can be seen from the fact that the class-specific density of a count variable 𝑌𝑗 takes 

on the following form: 

𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘) ∝
exp(𝛼 𝑗

𝑦𝑗 + 𝛽𝑗𝑘𝑦𝑗)

𝐸𝑗𝑘
, 

where it should be noted that 𝛼 𝑗
𝑦𝑗 cancels from the scoring equation. The expression for log𝐸𝑗𝑘 

changes compared to the nominal and ordinal case. For Poisson counts, log𝐸𝑗𝑘 = exp(𝛼𝑗 +

𝛽𝑗𝑘)𝑒𝑗, where 𝑒𝑗 is the exposure; and for Binomial counts, log𝐸𝑗𝑘 = 𝑒𝑗log(1 + exp(𝛼𝑗 + 𝛽𝑗𝑘)), 

where 𝑒𝑗 represents the number of trials. This shows that scoring equations should also include 

terms for the exposure (number of trials) when this number varies across individuals. When the 
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𝑒𝑗 are fixed, as for nominal and ordinal variables, the log𝐸𝑗𝑘 terms can be included in the 

constants 𝛾𝑘
∗. 

Local Dependencies 

Thus far, we assumed that responses are independent within classes. Now we will look at 

the scoring equations for LC models with local dependencies (Hagenaars, 1988; Magidson and 

Vermunt, 2004; Oberski, Kollenburg, and Vermunt, 2013). In the most general case, including a 

local dependency between (nominal) response variables 𝑌𝑗 and 𝑌𝑚 implies that  

𝑃(𝑌𝑗 = 𝑦𝑗 , 𝑌𝑚 = 𝑦𝑚|𝑋 = 𝑘) =
exp(𝛼𝑦𝑗

+ 𝛼𝑦𝑚
+ 𝛽𝑦𝑗𝑘 + 𝛽𝑦𝑚𝑘 + 𝛿𝑦𝑗𝑦𝑚

+ 𝜆𝑦𝑗𝑦𝑚𝑘)

𝐸𝑗𝑚𝑘
, 

where 

𝐸𝑗𝑚𝑘 = ∑

𝑅𝑗

𝑦𝑗=1

∑

𝑅𝑚

𝑦𝑚=1

exp(𝛼𝑦𝑗
+ 𝛼𝑦𝑚

+ 𝛽𝑦𝑗𝑘 + 𝛽𝑦𝑚𝑘 + 𝛿𝑦𝑗𝑦𝑚
+ 𝜆𝑦𝑗𝑦𝑚𝑘). 

This is a model with an association between 𝑌𝑗 and 𝑌𝑚, 𝛿𝑦𝑗𝑦𝑚
, and an interaction with the latent 

classes, 𝜆𝑦𝑗𝑦𝑚𝑘. In other words, it represents a model in which the strength of the local 

dependency is allowed to vary across classes. 

As can be seen, one difference with the local independence model is that the normalizing 

constants entering in the 𝛾𝑘
∗ coefficients of the scoring equations should be computed per set of 

locally dependent variables. The 𝛿𝑦𝑗𝑦𝑚
 term cancels from the scoring equations because it does 

not depend on the classes. In contrast, the term 𝜆𝑦𝑗𝑦𝑚𝑘 becomes part of the scoring equations, 

which in the case of class-specific local dependencies not only contains main effects but also 

interaction terms. Note that when local dependencies are not class-specific, that is, when 

𝜆𝑦𝑗𝑦𝑚𝑘 = 0, the only remaining difference between local independence and local dependence 

models concerns the computation of the constants 𝛾𝑘
∗. 
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The scoring equations in local-dependence LC models for ordinal variables are very 

similar to those for nominal variables. When the ordinal variables are modelled using an 

adjacent-category logit specification, 𝛿𝑦𝑗𝑦𝑚
= 𝛿𝑗𝑚𝑦𝑗𝑦𝑚 and 𝜆𝑦𝑗𝑦𝑚𝑘 = 𝜆𝑗𝑚𝑘𝑦𝑗𝑦𝑚. The scoring 

equations will contain the term 𝜆𝑗𝑚𝑘𝑦𝑗𝑦𝑚 when the interaction parameters 𝜆𝑗𝑚𝑘 are not fixed to 

0. 

Missing Values 

When some indicators have missing values, the LC model for the observed values 𝐘𝑜𝑏𝑠 

can be defined as follows: 

𝑃(𝐘𝑜𝑏𝑠 = 𝐲𝑜𝑏𝑠) = ∑

𝐾

𝑘=1

𝑃(𝑋 = 𝑘) ∏

𝐽

𝑗=1

𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘)𝑟𝑗 , 

where 𝑟𝑗 = 1 if the response variable concerned is observed and 0 when it has a missing value 

(Vermunt et al., 2008; Vermunt and Magidson, 2016). Note that this formulation implies that the 

product is taken over the observed responses only. Therefore, similar to subjects with complete 

data, the computation of the posteriors for subjects with missing values involves using only their 

observed responses. This means that the sum ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘 should be taken over the observed 

variables only or, equivalently, that 𝛽𝑦𝑗𝑘 should be set to 0 for the missing value category. 

However, the sum ∑𝐽
𝑗=1 log(𝐸𝑗𝑘) which is subtracted from the constants should also be taken 

over the observed variables only, implying that each pattern of missing data has its own set of 

constants 𝛾𝑘
∗. A way to account for this is by using the same 𝛾𝑘

∗ for all observations but adding a 

term log(𝐸𝑗𝑘) to the scoring equation when variable 𝑗 has a missing value. In other words, in 

order to deal with missing data, the scoring equation should be expanded to include the term 

∑𝐽
𝑗=1 log(𝐸𝑗𝑘) (1 − 𝑟𝑗). 
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A special type of missing data occurs when the LC model is estimated using 𝐽 variables, 

but only the first 𝐽1 of these are to be used for classification purposes (where 𝐽 = 𝐽1 + 𝐽2); for 

example, this situation may occur if one wishes to ignore the last 𝐽2 variables when calculating 

the classification probabilities because this information will not be available when performing 

out-of-sample predictions. In this case, the posteriors are obtained as follows: 

 𝑃(𝑋 = 𝑘|𝐘1 = 𝐲1) =
𝑃(𝑋=𝑘) ∏

𝐽1
𝑗=1 𝑃(𝑌𝑗=𝑦𝑗|𝑋=𝑘)

∑𝐾
𝑘=1 𝑃(𝑋=𝑘) ∏

𝐽1
𝑗=1

𝑃(𝑌𝑗=𝑦𝑗|𝑋=𝑘)
. 

As can be seen, only the slope parameters and the normalizing constants of the first 𝐽1 response 

variables will enter into the scoring equations. 

An Example with Five Dichotomous Indicators 

Table 1 provides an example illustrating the computation of the scoring equations for an 

application with five dichotomous response variables. It concerns the model with three latent 

classes estimated for the LatentGOLD “political.sav” demo data set. The upper part of Table 1 

gives the estimates of the model parameters 𝛾𝑘, 𝛼𝑦𝑗
, and 𝛽𝑦𝑗𝑘 using dummy coding with the 

parameters for the first class and the first item category fixed to 0. The lower part gives the 

values of 𝛾𝑘
∗ and log(𝐸𝑗𝑘), where for consistency we also use dummy coding for the log(𝐸𝑗𝑘) 

terms. To obtain the log(𝐸1𝑘) values for the first item, we first compute exp (𝛼𝑦1
+ 𝛽𝑦1𝑘), 

which for all three classes equals 1.0000 for 𝑦1 = 1, and 2.6533, 0.4452, and 1.4312 for 𝑦1 =

2. Next, we sum the obtained values across the two item categories and take the log, yielding 

1.29562, 0.3682, and 0.8884 for the three classes. Because of the dummy coding, we subtract 

the value of the first class, yielding the reported log(𝐸1𝑘) values 0.0000, -0.9275, and -0.4073. 

The log(𝐸𝑗𝑘) values of all items are subtracted from the 𝛾𝑘 values to get the intercepts 𝛾𝑘
∗ 

of the scoring equations, and the slopes 𝛽𝑦𝑗𝑘 can be used without any modification in the 
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scoring equations. In the case of a missing value, the slope parameters for the item concerned 

equal log(𝐸𝑗𝑘). Appendix A shows R code generated for this application by LatentGOLD, 

which can be used for classifying new observations.  

Other Types of Latent Class and Mixture Models 

Continuous Responses 

Now, let us turn to LC or mixture models for continuous response variables (McLachlan 

and Peel, 2000), also referred as latent profile models. In a local independence model with 

normal within-class distributions with possibly unequal variances, the response distributions 

have the following form: 

𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘) ∝ exp (−
1

2
log𝜎𝑗𝑘

2 −
1

2

𝜇𝑗𝑘𝜇𝑗𝑘

𝜎𝑗𝑘
2 +

𝜇𝑗𝑘𝑦𝑗

𝜎𝑗𝑘
2 −

1

2

𝑦𝑗𝑦𝑗

𝜎𝑗𝑘
2 ), 

where 𝜇𝑗𝑘 and 𝜎𝑗𝑘
2  denote the mean and variance of 𝑌𝑗 in latent class 𝑘. It can be seen that in 

the construction of the logistic scoring equations, the terms −
1

2
log𝜎𝑗𝑘

2  and −
1

2

𝜇𝑗𝑘𝜇𝑗𝑘

𝜎𝑗𝑘
2 , which do 

not contain the response, become part of the constants. Moreover, the equations will contain the 

linear and quadratic terms 
𝜇𝑗𝑘

𝜎𝑗𝑘
2 𝑦𝑗 and −

1

2𝜎𝑗𝑘
2 𝑦𝑗𝑦𝑗. 

When variances are assumed to be equal across classes, the first and last term of the 

above univariate normal distribution become −
1

2
log𝜎𝑗

2 and −
1

2

𝑦𝑗𝑦𝑗

𝜎𝑗
2 , respectively, implying that 

these cancel from the scoring equations because they do not depend on the class. This yields a set 

of scoring equations similar to those obtained in linear discriminant analysis (Hastie, Tibshirani, 

and Friedman, 2008). 

In the more general case of multivariate normal responses with unrestricted covariances 

Σ𝑘, the LC model becomes 
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𝑃(𝐘 = 𝐲) = ∑

𝐾

𝑘=1

𝑃(𝑋 = 𝑘)𝑃(𝐘 = 𝐲|𝑋 = 𝑘), 

with 

𝑃(𝐘 = 𝐲|𝑋 = 𝑘) ∝ exp (−
1

2
log|𝚺𝑘| −

1

2
𝛍𝑘

′ 𝚺𝑘
−1𝛍𝑘 + 𝛍𝑘

′ 𝚺𝑘
−1𝐲 −

1

2
𝐲′𝚺𝑘

−1𝐲). 

As can be seen, the scoring equations now not only contain linear and quadratic terms, but also 

interaction terms are needed. More specifically, denoting an entry of 𝚺𝑘
−1 by 𝑎𝑚𝑗𝑘, the weights 

for 𝑦𝑗, 𝑦𝑗
2, and 𝑦𝑗𝑦𝑚 are ∑𝐽

𝑚=1  𝜇𝑚𝑘𝑎𝑗𝑚𝑘, −
1

2
𝑎𝑗𝑗𝑘, and −𝑎𝑗𝑚𝑘, respectively. The first two 

terms of the multivariate normal density, which do not depend on the responses, become part of 

the constants. When variances and covariances are equal across classes, we again have equations 

with main effects only, as in linear discriminant analysis. 

Various kinds of restricted mixtures of multivariate normal distributions have been 

proposed in which constraints are imposed on the class-specific means and/or covariances. 

Examples include mixture factor models (McLachlan and Peel, 2000; Yung, 1997), mixture 

structural equation models (Dolan and Van der Maas, 1997), mixture models with constrained 

eigenvalue decompositions of Σ𝑘 (Banfield and Raftery, 1993), and mixture growth models 

(Muthén, 2004). For these models, the same scoring equations can be used as when means and 

covariances are unrestricted. 

An Example with Three Continuous Indicatores 

 Table 2 reports the model parameters and the scoring equations for a LC model with three 

continuous indicators (Glucose, Insulin, and SSPG) from the LatentGOLD “diabetes.dat” demo 

data set. It is a three-class model with a free residual covariance between the first two class 

indicators and with class-specific residual (co)variances. The scoring equation for this model 

contains not only linear terms, but also quadratic terms as well as the interaction terms between 
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𝑦1 and 𝑦2.  

Covariates 

When covariates are included in the model, the latent class probabilities are typically 

modeled as a logistic function of the covariates (Bandeen-Roche et al, 1997; Dayton and 

McReady, 1988; Yamaguchi, 2000). That is, 

𝑃(𝑋 = 𝑘|𝐳) =
exp(𝛾0𝑘 + ∑𝑃

𝑝=1 𝛾𝑝𝑘𝑧𝑝)

∑𝐾
𝑘=1 exp(𝛾0𝑘 + ∑𝑃

𝑝=1 𝛾𝑝𝑘𝑧𝑝)
. 

Here, 𝐳 denotes the vector of covariates, and 𝛾0𝑘 and 𝛾𝑝𝑘 represent the constants and the 

regression parameters for covariate 𝑧𝑝. 

Since the denominator does not depend on the class, it cancels from the formula for the 

posterior class membership probability and thus also from the scoring equations. Assuming the 

response variables are nominal, the posterior probability of class membership given responses 

and covariates becomes: 

𝑃(𝑋 = 𝑘|𝐳) =
exp(𝛾0𝑘

∗ + ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘 + ∑𝑃

𝑝=1 𝛾𝑝𝑘𝑧𝑝)

∑𝐾
𝑘=1 exp(𝛾0𝑘

∗ + ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘 + ∑𝑃

𝑝=1 𝛾𝑝𝑘𝑧𝑝)
. 

That is, the covariate terms can simply be added to the scoring equations. 

Covariates may also have direct effects on the indicators. Let us assume we have a single 

covariate 𝑧 which has a direct effect on the categorical response variable 𝑌𝑗; that is, 

𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘, 𝑧) =
exp(𝛼𝑦𝑗

+ 𝛽𝑦𝑗𝑘 + 𝛿𝑦𝑗
𝑧)

𝐸𝑗𝑘|𝑧
, 

where 

𝐸𝑗𝑘|𝑧 = ∑

𝑅𝑗

𝑦𝑗=1

exp(𝛼𝑦𝑗
+ 𝛽𝑦𝑗𝑘 + 𝛿𝑦𝑗

𝑧). 

As can be seen, in this model, the normalizing constants depend on the covariate value, meaning 
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that we no longer have a single log𝐸𝑗𝑘 which can be subtracted from 𝛾𝑘. Because the log𝐸𝑗𝑘|𝑧 

are neither linear functions of the covariate values, they cannot be added to the linear term for the 

covariate concerned. In other words, the exact linear logistic representation of the posterior 

probabilities collapses in this situation, though, as discussed below and in Appendix B, it may 

still be used as an approximation. An exception is the situation in which the covariate is a 

nominal or dichotomous variable, in which case exact scoring equations can still be obtained by 

subtracting log𝐸𝑗𝑘|𝑧 from the 𝛾𝑝𝑘 terms of the covariate concerned. 

Note that when the direct effect of a covariate is allowed to be class specific, or 

equivalently, when an interaction term is included, the indicator-covariate interaction should also 

be added to the scoring equation. Again, the scoring equations will be exact only when the 

covariate concerned is nominal or dichotomous. For example, this is the specification used in 

multiple-group LC models in which response probabilities may be allowed to differ across 

subgroups for one or more indicators (Clogg and Goodman, 1984; Eid, Langeheine, and Diener, 

2004; Kankaras, Moors, and Vermunt, 2010). 

Multiple Latent Variables 

Suppose the LC model contains two latent variables 𝑋1 and 𝑋2 instead of one, so that 

we have a LC Factor or Discrete Factor model. Such a model, has the following form (Goodman, 

1974b; Hagenaars, 1990; Magidson and Vermunt, 2001; Vermunt and Magidson, 2005): 

𝑃(𝐘 = 𝐲) = ∑

𝐾1

𝑘1=1

∑

𝐾2

𝑘2=1

𝑃(𝑋1 = 𝑘1, 𝑋2 = 𝑘2) ∏

𝐽

𝑗=1

𝑃(𝑌𝑗 = 𝑦𝑗|𝑋1 = 𝑘1, 𝑋2 = 𝑘2). 

As in the single latent variable case, the 𝑃(𝑋1 = 𝑘1, 𝑋2 = 𝑘2) and 𝑃(𝑌𝑗 = 𝑦𝑗|𝑋1 = 𝑘1, 𝑋2 = 𝑘2) 

can be modelled using logistic regression models (Magidson and Vermunt, 2001). For example, 

𝑃(𝑋1 = 𝑘1, 𝑋2 = 𝑘2) =
exp(𝛾𝑘1

1 + 𝛾𝑘2

2 + 𝛾𝑘1𝑘2

12 )

𝐷
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𝑃(𝑌𝑗 = 𝑦𝑗|𝑋1 = 𝑘1, 𝑋2 = 𝑘2) =
exp(𝛼𝑦𝑗

+ 𝛽𝑦𝑗𝑘1

1 + 𝛽𝑦𝑗𝑘2

2 )

𝐸𝑗𝑘1𝑘2

. 

Also in this case, the posterior probabilities can be written as functions of the LC model 

parameters; i.e., 

𝑃(𝑋1 = 𝑘1, 𝑋2 = 𝑘2|𝐘 = 𝐲) =
exp(𝛾𝑘1𝑘2

∗ + ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘1

1 + ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘2

2 )

∑𝐾1
𝑘1=1

∑𝐾2
𝑘2=1 exp(𝛾𝑘1𝑘2

∗ + ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘1

1 + ∑𝐽
𝑗=1 𝛽𝑦𝑗𝑘2

2 )
, 

where the 𝛾𝑘1𝑘2

∗  contain the 𝛾 terms and the normalizing constants 𝐸𝑗𝑘1𝑘2
. 

Note that the above equation for two latent variables can easily be generalized to an 

arbitrary number of 𝑆 latent variables. The logistic scoring equation then becomes: 

𝑃(𝑋1 = 𝑘1, . . . , 𝑋𝑆 = 𝑘𝑆|𝐘 = 𝐲) =
exp(𝛾𝑘1...𝑘𝑆

∗ + ∑𝑆
𝑠=1 ∑𝐽

𝑗=1 𝛽𝑦𝑗𝑘𝑠

𝑠 )

∑𝐾1
𝑘1=1 . . . ∑𝐾𝑆

𝑘𝑆=1 exp(𝛾𝑘1...𝑘𝑆

∗ + ∑𝑆
𝑠=1 ∑𝐽

𝑗=1 𝛽𝑦𝑗𝑘𝑠

𝑠 )
. 

It should be noted that the marginal posterior probabilities 𝑃(𝑋𝑠 = 𝑘𝑠|𝐘 = 𝐲), which are 

obtained by collapsing over the other latent variables, can not be written as logistic functions. 

However, logistic approximations of the marginal posteriors may be precise enough in most 

applications. Below, we discuss how such approximations can be obtained. 

Estimating the Scoring Equations Using Logistic Regression Analysis 

Rather than computing the scoring equations from the parameters of the LC model, it is 

also possible to obtain these equations posthoc using a standard routine for multinomial logistic 

regression analysis. This involves the following three steps:  

1. After selection of the final LC model, save the posterior class membership probabilities 

to an output file. This is a feature available in all software packages for LC analysis. 

2. Create an expanded data set with 𝐾 records per subject, which contains a column with 

the class number taking on values from 1 to 𝐾, a column with the posterior probability 
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for the person and class concerned, and columns for the response variables and covariates 

used in the LC model, the latter columns containing the same values repeated in each of 

the K records for each subject.  

3. Estimate a logistic regression model in which the posteriors are used as weights. The 

class number is the dependent variable, and the responses and covariates are the 

predictors.  

Depending on the situation, in the third step the responses and covariates are modeled as either 

nominal or numeric predictors, quadratic and/or interaction effects are added, and missing value 

dummies are included. For count variables, one should include the exposures (or total number of 

trials) as additional numeric predictors when these differ across individuals. Steps 2 and 3 are 

automated in the LatentGOLD program (Vermunt and Magidson, 2016, 2021), and are called 

Step3-Scoring. 

 This approach can be used not only for the posthoc computation of the exact scoring 

equations, but also for obtaining approximate scoring equations. This is useful when an exact 

form does not exist, such as when direct effects of numeric covariates on indicators were 

included in the LC model or when non-canonical link functions were used for ordinal variables, 

as well as the situation where one prefers a set of simplified equations, say without quadratic or 

interaction terms, that are almost as good as the exact ones. An example of the latter can be seen 

in Table 3, which reports the approximate scoring equations for the diabetes.dat example 

presented above, but leaving out the quadratic terms of 𝑦1 and 𝑦2 and their interaction terms. 

The approximate equations predict the class memberships almost as well as the exact equations; 

that is, the entropy R2 equals 0.817, while its original value equals 0.833. 

When ordinal variables are modeled using non-canonical link functions, such as 
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cumulative logit or probit models, we have two options. Option 1 is to compute the exact scoring 

equations by treating the response variables as nominal predictors in the posthoc logistic 

regression analysis; that is, by making use of the fact that the estimated 𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘) based 

on an ordinal model can be reproduced perfectly by an unrestricted multinomial model. Option 2 

is to estimate the scoring equations using the response variables as numeric predictors, which in 

fact implies that the estimated 𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘) from the original LC model are approximated 

by an adjacent-category logit model. 

As shown above, in LC models with multiple latent variables, an exact set of logistic 

scoring equations exists for the joint class membership probabilities, but not for the marginal 

class membership probabilities. The posthoc estimation method can also be used to obtain 

approximate scoring equations based on the marginal posteriors. Applying these equations will 

be simpler than first computing the joint and subsequently collapsing over the other latent 

variables, especially with models containing more than two latent variables. The quality of the 

resulting approximation can be assessed by a goodness-of-fit measure. 

Discussion 

As in continuous latent variables models, in LC models it is important to have a simple scoring 

rule for predicting a person's value on the latent variable. In this paper, we showed that for LC 

models this scoring rule has the form of a linear logistic equation, with weights which are simple 

functions of the original LC model parameters. We derived the exact scoring equations for 

nominal, ordinal, count, and continuous response variables, for local independence and local 

dependence models, for models with covariates, for models with multiple latent variables, and 

for models with missing values on some of the indicators. Moreover, we discussed several 

situations in which exact scoring equations may not exist, such as LC models with direct effects 
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of covariates on the indicators and LC models in which the conditional response distributions are 

restricted using regression models based on non-canonical link functions. 

We also explained how to compute exact or approximate scoring equations with the 

saved posterior probabilities from any LC analysis program. This can be achieved with standard 

routines for logistic regression analysis. In practice, this may be much easier than computing the 

scoring equations from the LC model parameters, where the constants from the scoring equations 

may be somewhat more tedious to obtain. 

While not discussed explicitly, the computation of the scoring equations proceeds in 

exactly the same manner in LC models for mixed responses; that is, in LC models for 

combinations of nominal, ordinal, count, and continuous indicators (Hennig and Liao, 2013; 

Hunt and Jorgensen, 1999; Vermunt and Magidson, 2002). The only thing that needs to be done 

in the computation of the scoring equations is to collect the terms for the different indicators, 

irrespective of their scale types. When using the posthoc method based on a logistic regression 

analysis, things are even easier. Nominal indicators are used as nominal predictors, and ordinal, 

count and continuous indicators as numeric predictors. Depending on the situation, quadratic 

and/or interaction terms may also need to be included. 

The scoring equations discussed in this article can be used to obtain point estimates for 

the posterior probabilities, not only for subjects in the original sample, but also for new subjects. 

However, an issue not dealt with in this paper is the uncertainty about those estimates. Since the 

“regression” weights of the scoring equation are sample estimates, when deriving a prediction, it 

would be better to take into account this sampling variability. Our future research will focus on 

this important topic. 
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Appendix A: R Code Generated by LatentGOLD for the First Example 

Application 

With the LatentGOLD output options “ScoringEquations” and “WriteRsyntax=<filename>”, one 

can request an R syntax file that can be used to classify new observations. The variable names in 

the “political.sav” data file are sys_resp, ideo_lev, rep_pot, prot_app, and conv_par.  

 The lg_scoring function, first creates dummies for the response categories and for missing 

values. Then, it computes the class-specific linear terms using the dummies ad the scoring 

equations’ parameters. Subsequently, the linear terms are exponentiated and transformed to 

posterior probabilities. The function’s output are the posterior probabilities and the modal class. 

Below, you find the R code, which ends with example code calling the lg_scoring function to 

add classification information to a data set. 

 

## Scoring function to be called per record 

lg_scoring<-function(dat) { 

  # Create auxiliary variables  

  if(is.na(dat$sys_resp)) { 

    sys_resp_lg_1<-0;sys_resp_lg_2<-0;sys_resp_lg_m<-1 

  } 

  else { 

    if(dat$sys_resp==1) { 

      sys_resp_lg_1<-1;sys_resp_lg_2<-0;sys_resp_lg_m<-0 

    } 

    else if(dat$sys_resp==2) { 

      sys_resp_lg_1<-0;sys_resp_lg_2<-1;sys_resp_lg_m<-0 

    } 

    else { 

      sys_resp_lg_1<-0;sys_resp_lg_2<-0;sys_resp_lg_m<-1 

    } 

  } 

 

  # The same is done for the other 4 indicators   

  …  

 

  # Compute classification logits  

  Cluster_lg_1<-(0)+ 
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     (0)*sys_resp_lg_1+(0)*sys_resp_lg_2+ 

     (0)*ideo_lev_lg_1+(0)*ideo_lev_lg_2+ 

     (0)*rep_pot_lg_1+(0)*rep_pot_lg_2+ 

     (0)*prot_app_lg_1+(0)*prot_app_lg_2+ 

     (0)*conv_par_lg_1+(0)*conv_par_lg_2+ 

     (0)*sys_resp_lg_m+(0)*ideo_lev_lg_m+ 

     (0)*rep_pot_lg_m+(0)*prot_app_lg_m+ 

     (0)*conv_par_lg_m 

  Cluster_lg_2<-(3.4185551)+ 

     (0)*sys_resp_lg_1+(-1.7853117)*sys_resp_lg_2+ 

     (0)*ideo_lev_lg_1+(-3.0502076)*ideo_lev_lg_2+ 

     (0)*rep_pot_lg_1+(0.56595846)*rep_pot_lg_2+ 

     (0)*prot_app_lg_1+ (-0.74630356)*prot_app_lg_2+ 

     (0)*conv_par_lg_1+(-3.039846)*conv_par_lg_2+ 

     (-0.9274766)*sys_resp_lg_m+(-0.49927555)*ideo_lev_lg_m+ 

     (0.11060958)*rep_pot_lg_m+ (-0.34180273)*prot_app_lg_m+ 

     (-1.8328984)*conv_par_lg_m 

  Cluster_lg_3<-(-3.6424675)+ 

     (0)*sys_resp_lg_1+ (-0.61732246)*sys_resp_lg_2+ 

     (0)*ideo_lev_lg_1+ (-0.23276128)*ideo_lev_lg_2+ 

     (0)*rep_pot_lg_1+ (3.6818864)*rep_pot_lg_2+ 

     (0)*prot_app_lg_1+ (3.0608866)*prot_app_lg_2+ 

     (0)*conv_par_lg_1+ (-1.0034281)*conv_par_lg_2+ 

     (-0.40726727)*sys_resp_lg_m+(-0.089565904)*ideo_lev_lg_m+ 

     (1.9387485)*rep_pot_lg_m+(2.5015355)*prot_app_lg_m+ 

     (-0.81826931)*conv_par_lg_m 

 

  # Compute odds from logits  

  max_lg<-Cluster_lg_1 

  if(Cluster_lg_2>max_lg) { 

    max_lg<-Cluster_lg_2 

  } 

  if(Cluster_lg_3>max_lg) { 

    max_lg<-Cluster_lg_3 

  } 

  Cluster_lg_1<-exp(Cluster_lg_1-max_lg) 

  Cluster_lg_2<-exp(Cluster_lg_2-max_lg) 

  Cluster_lg_3<-exp(Cluster_lg_3-max_lg) 

 

  # Compute modal class and probabilities from odds  

  max_lg<-Cluster_lg_1 

  Cluster_lg_modal<-1 

  if(Cluster_lg_2>max_lg) { 

    max_lg<-Cluster_lg_2; Cluster_lg_modal<-2 

  } 

  if(Cluster_lg_3>max_lg) { 



Running head: Obtaining Scoring Equations for Latent Class Models 
 

26 
 

    max_lg<-Cluster_lg_3; Cluster_lg_modal<-3 

  } 

  sum_lg<-Cluster_lg_1+Cluster_lg_2+Cluster_lg_3 

  Cluster_lg_1<-Cluster_lg_1/sum_lg 

  Cluster_lg_2<-Cluster_lg_2/sum_lg 

  Cluster_lg_3<-Cluster_lg_3/sum_lg 

 

  return(list( 

    "Cluster_modal"=Cluster_lg_modal, 

    "Cluster_1"=Cluster_lg_1, 

    "Cluster_2"=Cluster_lg_2, 

    "Cluster_3"=Cluster_lg_3 

  )) 

} 

 

## Example of call of scoring function in a loop over records  

outdata<-inpdata 

for(i in 1:nrow(outdata)){ 

  scoring<-lg_scoring(outdata[i,]) 

  outdata[i,"Cluster_modal"]<-scoring$Cluster_modal 

  outdata[i,"Cluster_1"]<-scoring$Cluster_1 

  outdata[i,"Cluster_2"]<-scoring$Cluster_2 

  outdata[i,"Cluster_3"]<-scoring$Cluster_3 

} 

 

Appendix B: Taylor Approximation of the Normalizing Constants with a 

Covariate Having a Direct Effect on a Categorical Indicator 

As shown in the main text, when a numeric covariate z has a direct effect on a categorical 

indicator, the normalizing constant of the indicator concerned becomes: 

𝐸𝑗𝑘|𝑧 = ∑

𝑅𝑗

𝑦𝑗=1

exp (𝛼𝑦𝑗
+ 𝛽𝑦𝑗𝑘 + 𝛿𝑦𝑗

𝑧), 

and will thus depend on the value of z. As a result, the scoring equations will no longer be linear 

logistic. However, a possible way out is to approximate this term using a Taylor expansion. 

For simplicity, assume covariate z is centered, and thus has a mean of 0. The second-

order Taylor approximation of log 𝐸𝑗𝑘|𝑧 at 𝑧 = 0 equals: 
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log 𝐸𝑗𝑘|𝑧 = log 𝐸𝑗𝑘|𝑧=0 +
d log 𝐸𝑗𝑘|𝑧=0

d𝑧
𝑧 +

d2 log 𝐸𝑗𝑘|𝑧=0

d2𝑧
/ 2  𝑧2, 

with 

d log 𝐸𝑗𝑘|𝑧=0

d𝑧
= ∑

𝑅𝑗

𝑦𝑗=1

𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘, 𝑧 = 0) 𝛿𝑦𝑗
 

and 

d2 log 𝐸𝑗𝑘|𝑧=0

d2𝑧
= ∑

𝑅𝑗

𝑦𝑗=1

𝑃(𝑌𝑗 = 𝑦𝑗|𝑋 = 𝑘, 𝑧 = 0) [𝛿𝑦𝑗
−

d log 𝐸𝑗𝑘|𝑧=0

d𝑧
] 𝛿𝑦𝑗

. 

The term log 𝐸𝑗𝑘|𝑧=0 is subtracted from the intercept of class k, the 
d log 𝐸𝑗𝑘|𝑧=0

d𝑧
 are 

subtracted from the linear terms for z, and the −
d2 log 𝐸𝑗𝑘|𝑧=0

d2𝑧
/ 2 appear as quadratic 

terms in the scoring equations. 
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Table 1: Latent class model parameters and scoring equation parameters for the political.sav data 
example  
 

LC model parameters 
  Intercept X=1 Intercept X=2 Intercept X=3 

X  0.0000 -0.0723 -0.5173 
     

 Intercept Slopes X=1 Slopes X=2 Slopes X=3 

Y1=1 0.0000 0.0000 0.0000 0.0000 

Y1=2 0.9758 0.0000 -1.7853 -0.6173 

Y2=1 0.0000 0.0000 0.0000 0.0000 

Y2=2 -0.3534 0.0000 -3.0502 -0.2328 

Y3=1 0.0000 0.0000 0.0000 0.0000 

Y3=2 -1.7062 0.0000 0.5660 3.6819 

Y4=1 0.0000 0.0000 0.0000 0.0000 

Y4=2 0.2028 0.0000 -0.7463 3.0609 

Y5=1 0.0000 0.0000 0.0000 0.0000 

Y5=2 2.0140 0.0000 -3.0398 -1.0034 
     

Scoring equation parameters 
  Intercept X=1 Intercept X=2 Intercept X=3 

X  0.0000 3.4186 -3.6425 
     

  E values for 

X=1 

E values for 

X=2 

E values for 

X=3 

Y1  0.0000 -0.9275 -0.4073 

Y2  0.0000 -0.4993 -0.0896 

Y3  0.0000 0.1106 1.9387 

Y4  0.0000 -0.3418 2.5015 

Y5   0.0000 -1.8329 -0.8183 
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Table 2: Latent class model parameters and scoring equation parameters for the diabetes.dat data 

example 

LC model parameters 
 Intercept X=1 Intercept X=2 Intercept X=3 

X 0 -0.6927 -1.036 
    

 Parameters X=1 Parameters X=2 Parameters X=3 

Mean Y1 91.2315 104.0049 234.7598 

Mean Y2 359.2211 495.0568 1121.0893 

Mean Y3 163.1271 309.4323 76.9772 

Variance Y1 76.4770 230.0891 5005.9106 

Variance Y2 2669.7454 14844.5520 73551.0945 

Variance Y3 2421.4506 22966.5152 2224.5020 

Covariance Y1-Y2 96.4624 1279.9240 17910.7089 
    

Scoring equation parameters 
 Intercept X=1 Intercept X=2 Intercept X=3 

X 0.0000 42.6430 56.8566 
    

 Slopes X=1 Slopes X=2 Slopes X=3 

Y1 0.0000 -0.5599 -1.1314 

Y2 0.0000 -0.1066 -0.0661 

Y3 0.0000 -0.0539 -0.0328 

Y1*Y1 0.0000 0.0027 0.0061 

Y2*Y2 0.0000 0.0002 -0.0001 

Y3*Y3 0.0000 0.0001 0.0001 

Y1*Y2 0.0000 0.0002 0.0000 
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Table 3: Approximate scoring equation parameters for the diabetes.dat data example 

  
Intercept 

X=1 

Intercept 

X=2 

Intercept 

X=3 

X 0.0000 -9.8317 -25.7983 

    

 Slopes 

X=1 

Slopes 

X=2 

Slopes 

X=3 

Y1 0.0000 0.0435 0.0626 

Y2 0.0000 0.0236 0.0416 

Y3 0.0000 -0.0816 -0.0173 

Y3*Y3 0.0000 0.0003 -0.0001 

 

 


