# Latent Class Analysis: Technical settings

Jeroen K. Vermunt

Department of Methodology and Statistics, Tilburg University

www.jeroenvermunt.nl

#### Introduction

- In this video I will discuss technical settings (in Latent GOLD) which may be relevant when running LC models
- Starting values (most important one!)
- Convergence and iteration limits of algorithms
- Bayes constants
- Missing values
- Bootstrap
- Threads

### Technical tab in Latent GOLD 6.0

| Convergence Limits | Bayes Constants                |
|--------------------|--------------------------------|
| EM Tolerance 0.01  | Latent Variables 1             |
| Tolerance 1e-008   | Categorical Variables 1        |
|                    | Poisson Counts 1               |
| teration Limits    | Error Variances 1              |
| Newton-Raphson 50  | Missing Values  Exclude Cases  |
|                    | Include Indicators/Dependent ( |
| Start Values       | Include All (                  |
| Random Sets 16     |                                |
| Iterations 50      | Bootstrap  Replications 500    |
| Seed 0             | Seed 0                         |
| Tolerance 1e-005   | Random Start Sets 0            |
| hreads             | Continuous Factors             |
| Maximum Threads 8  | Number of Nodes 10 V           |

# Starting values (local maxima)

- Problem: when running a LC model, you may obtain a local maximum solution (a lower LL value than the maximum LL value)
- Solution: use multiple random starts
- Latent GOLD default settings:
  - 16 random start sets
  - 50 iterations per start set (+ 2\*50 for best 10%)
- It may be a good idea to increase this to say 160 and 250, respectively, especially if rerunning a certain model gives different results
- Seed: allows reproducing earlier results (Latent GOLD saves model with the best seed)

# Other technical settings

- Convergence/Iteration limits: rather strict defaults are usually okay
- Bayes Constants: "smoothing" priors for model probabilities to prevent "boundary" estimates and convergence problems
- Missing values: "include indicators" is a good option if you have observations with missing values. Yields ML estimates under MAR missingness.
- Bootstrap: replications (determines precision) and startsets (mainly in -2LLdiff)
- Threads: multiple processing is used to speed up computations