Latent Class Analysis: Assumptions, Equations, and Estimation

Jeroen K. Vermunt

Department of Methodology and Statistics, Tilburg University www.jeroenvermunt.nl

1

Introduction

- I will discuss model assumptions and equations
- I will explain maximum likelihood estimation
- I will use a data set with three dichotomous observed variables from GSS 1987 (antireli.dat)
 - Y₁="allow anti-religionists to speak"(1 = allowed, 2 = not allowed)
 - Y₂="allow anti-religionists to teach" (1 = allowed, 2 = not allowed)
 - Y₃="remove anti-religious books from the library" (1 = do not remove, 2 = remove)
- This is the smallest possible application of LC analysis

Data set in the form of a multidimensional frequency table

			Observed	Observed
Y_1	Y_2	Y_3	frequency (n)	proportion (n/N)
1	1	1	696	0.406
1	1	2	68	0.040
1	2	1	275	0.161
1	2	2	130	0.076
2	1	1	34	0.020
2	1	2	19	0.011
2	2	1	125	0.073
2	2	2	366	0.214

Latent GOLD Profile output for 2-class model (caseweight=n; indicators=nominal)

🖻 🖬 🐰 🛍 💼 🎒 🕄 🕨 🛛 😽				
🖃 antireli.dat		Cluster1	Cluster2	Overall
⊣ Model1 - L² = 0.0055 •	Cluster Size	0.6201	0.3799	
Parameters	Indicators			
🕀 Profile	Y1			
🗄 ProbMeans	1	0.9601	0.2292	0.6824
Bivariate Residuals	2	0.0399	0.7708	0.3176
EstimatedValues-Model	Y2			
Iteration Detail	1	0.7424	0.0436	0.4769
Model2	2	0.2576	0.9564	0.5231
	Y3			
	1	0.9167	0.2402	0.6597
	2	0.0833	0.7598	0.3403

Cluster1 = liberals Cluster2 = conservatives

Questions of interest ...

- How does the statistical model look like that we are estimating?
- How is the estimation of this model performed?
- Or ... opening the black box!
- Some notation:
 - The discrete latent variable is called X
 - The observed variables are called y_1 , y_2 , y_3 . etc.

Assumptions 2-class model for y_1 , y_2 , and y_3

- We define a model for $P(y_1, y_2, y_3)$, the joint probability of a particular response pattern
- Two key model assumptions:

1. The joint probability/distribution $P(y_1, y_2, y_3)$ is a <u>mixture</u> of 2 class-specific distributions (some persons with this pattern are from class 1 and others from class 2)

2. Within class X=1 and X=2, responses are independent (local independence) (knowing your response on y_1 doesn't tell me anything about y_2 if I know your class membership)

Equations of 2-class model for
$$y_1$$
, y_2 , and y_3

1. Joint probability is a <u>mixture</u> of 2 class-specific distributions $P(y_1, y_2, y_3) = P(X=1) P(y_1, y_2, y_3 | X=1) + P(X=2) P(y_1, y_2, y_3 | X=2)$

2. Within classes responses are independent (local independence) $P(y_1, y_2, y_3 | X=1) = P(y_1 | X=1) P(y_2 | X=1) P(y_3 | X=1)$ $P(y_1, y_2, y_3 | X=2) = P(y_1 | X=2) P(y_2 | X=2) P(y_3 | X=2)$

Using the numbers from the Profile output

$$P(y_1=1, y_2=1, y_3=1) = 0.620 * 0.653 + 0.380 * 0.002 = 0.406$$

$$P(y_1=1, y_2=1, y_3=1 | X=1) = 0.960 * 0.742 * 0.917 = 0.653$$

$$P(y_1=1, y_2=1, y_3=1 | X=2) = 0.229 * 0.044 * 0.240 = 0.002$$

$$P(y_1=1,y_2=2,y_3=1) = 0.620 * 0.227 + 0.380 * 0.053 = 0.161$$

$$P(y_1=1,y_2=2,y_3=1 | X=1) = 0.960 * 0.258 * 0.917 = 0.227$$

$$P(y_1=1,y_2=2,y_3=1 | X=2) = 0.229 * 0.956 * 0.240 = 0.053$$

The Excel file antirel.xls shows the computations for all 8 patterns

The general case: a *C*-class LC model for *J* indicators

1. Mixture of *C* classes:

$$P(y_1, ..., y_J) = \sum_{c=1}^{C} P(X = c) P(y_1, ..., y_J \mid X = c)$$

2. Local independence of *J* indicators:

$$P(y_1,...,y_J \mid X = c) = \prod_{j=1}^{J} P(y_j \mid X = c)$$

1. and 2. combined:

$$P(y_1, ..., y_J) = \sum_{c=1}^{C} P(X = c) \prod_{j=1}^{J} P(y_j \mid X = c)$$

Maximum likelihood (ML) estimation

- Finding the parameter values which maximize the likelihood, the probability of observing the data you have
- Likelihood = product across observations of the probability of having the observed response pattern
- Log-likelihood = sum across observations of the logarithm (In) of the probability of having the observed response pattern

$$LL = \sum_{i=1}^{N} \ln P(\mathbf{y}_i) = \sum_{all \ pattern \ p} n_p \ln P(\mathbf{y}_p)$$

ML solution for antirel.dat

- LL = -2795.38 (see Latent GOLD and Excel sheet)
- You can verify that other values for the model probabilities give a lower (more negative) LL value
- How do we find the ML solution? We need an algorithm for this.
- In LC analysis we use the Expectation-Maximization (EM) algorithm and the Newton-Raphson algorithm