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Introduction

• I will discuss model assumptions and equations

• I will explain maximum likelihood estimation

• I will use a data set with three dichotomous observed variables from GSS 
1987 (antireli.dat)
• Y1=“allow anti-religionists to speak”(1 = allowed, 2 = not allowed)

• Y2=“allow anti-religionists to teach” (1 = allowed, 2 = not allowed) 

• Y3=“remove anti-religious books from the library” (1 = do not remove, 2 = remove)

• This is the smallest possible application of LC analysis
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Data set in the form of a multidimensional 
frequency table

Y1 Y2 Y3

Observed

frequency (n)

Observed 

proportion (n/N)

1 1 1 696 0.406

1 1 2 68 0.040

1 2 1 275 0.161

1 2 2 130 0.076

2 1 1 34 0.020

2 1 2 19 0.011

2 2 1 125 0.073

2 2 2 366 0.214
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Latent GOLD Profile output for 2-class model 
(caseweight=n; indicators=nominal)

Cluster1 = liberals
Cluster2 = conservatives
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Questions of interest …

• How does the statistical model look like that we are estimating? 

• How is the estimation of this model performed?

• Or … opening the black box!

• Some notation:
• The discrete latent variable is called X

• The observed variables are called y1, y2, y3. etc. 
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Assumptions 2-class model for y1, y2, and y3

• We define a model for P(y1, y2, y3), the joint probability of a particular 
response pattern

• Two key model assumptions:
1. The joint probability/distribution P(y1, y2, y3) is a mixture of 2 class-specific 
distributions (some persons with this pattern are from class 1 and others from 
class 2)

2. Within class X=1 and X=2, responses are independent (local independence)

(knowing your response on y1 doesn’t tell me anything about y2 if I know your 
class membership)
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Equations of 2-class model for y1, y2, and y3

1. Joint probability is a mixture of 2 class-specific distributions

P(y1,y2,y3)= P(X=1) P(y1,y2,y3|X=1) + P(X=2) P(y1,y2,y3|X=2) 

2. Within classes responses are independent (local independence)

P(y1,y2,y3|X=1) = P(y1|X=1) P(y2|X=1) P(y3|X=1) 

P(y1,y2,y3|X=2) = P(y1|X=2) P(y2|X=2) P(y3|X=2) 
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Using the numbers from the Profile output

P(y1=1,y2=1,y3=1) = 0.620 * 0.653 + 0.380 * 0.002 = 0.406

P(y1=1,y2=1,y3=1|X=1) = 0.960 * 0.742 * 0.917 = 0.653

P(y1=1,y2=1,y3=1|X=2) = 0.229 * 0.044 * 0.240 = 0.002

P(y1=1,y2=2,y3=1) = 0.620 * 0.227 + 0.380 * 0.053 = 0.161

P(y1=1,y2=2,y3=1|X=1) = 0.960 * 0.258 * 0.917 = 0.227

P(y1=1,y2=2,y3=1|X=2) = 0.229 * 0.956 * 0.240 = 0.053

The Excel file antirel.xls shows the computations for all 8 patterns
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The general case: a C-class LC model for J
indicators
1. Mixture of C classes:

2. Local independence of J indicators:

1. and 2. combined:
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Maximum likelihood (ML) estimation

• Finding the parameter values which maximize the likelihood, the
probability of observing the data you have

• Likelihood = product across observations of the probability of having
the observed response pattern

• Log-likelihood = sum across observations of the logarithm (ln) of the
probability of having the observed response pattern

𝐿𝐿 = 

𝑖=1

𝑁

ln 𝑃 𝐲𝑖 = 

𝑎𝑙𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑝

𝑛𝑝 ln 𝑃 𝐲𝑝
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ML solution for antirel.dat

• LL = -2795.38 (see Latent GOLD and Excel sheet)

• You can verify that other values for the model probabilities give a 
lower (more negative) LL value

• How do we find the ML solution? We need an algorithm for this.

• In LC analysis we use the Expectation-Maximization (EM) algorithm
and the Newton-Raphson algorithm
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