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Abstract

Latent class (LC) analysis is used by social, behavioral, and medical science
researchers among others as a tool for clustering (or unsupervised classi-
fication) with categorical response variables, for analyzing the agreement
between multiple raters, for evaluating the sensitivity and specificity of di-
agnostic tests in the absence of a gold standard, and for modeling hetero-
geneity in developmental trajectories. Despite the increased popularity of
LC analysis, little is known about statistical power and required sample size
in LC modeling. This paper shows how to perform power and sample size
computations in LC models using Wald tests for the parameters describing
association between the categorical latent variable and the response vari-
ables. Moreover, the design factors affecting the statistical power of these
Wald tests are studied. More specifically, we show how design factors which
are specific for LC analysis, such as the number of classes, the class propor-
tions, and the number of response variables, affect the information matrix.
The proposed power computation approach is illustrated using realistic sce-
narios for the design factors. A simulation study conducted to assess the
performance of the proposed power analysis procedure showed that it per-
forms well in all situations one may encounter in practice.
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1 Introduction

Latent class (LC) analysis was initially introduced in the 1950s by Lazars-
feld (1950) as a tool for identifying subgroups of individuals giving similar
responses to sets of dichotomous attitude questions. It took another two
decades till LC analysis started attracting the attention of other statisti-
cians. Since then, various important extensions of the original LC model
have been proposed, such as models for polytomous responses, models with
covariates, models with multiple latent variables, and models with parameter
constraints (Goodman, 1974; Dayton and Macready, 1976; Formann, 1982;
McCutcheon, 1987; Dayton and Macready, 1988; Formann, 1992; Vermunt,
1996; Magidson and Vermunt, 2004). More recently, statistical software for
LC analysis has become generally available — e.g., Latent GOLD (Vermunt
and Magidson, 2013b), Mplus (Muthén and Muthén, 2012), LEM (Vermunt,
1997), the SAS routine PROC LCA (Lanza et al., 2007), and the R package
poLCA (Linzer and Lewis, 2011) — which has contributed to the increased
popularity of this method among applied researchers. Applications of LC
analysis include building typologies of respondents based on social survey
data (McCutcheon, 1987), identifying subgroups based on health risk behav-
iors (Collins and Lanza, 2010), identifying phenotypes of stalking victimiza-
tion (Hirtenlehner et al., 2012), and finding symptom subtypes of clinically
diagnosed disorders (Keel et al., 2004). Applications which are specific for
medical research include the estimation of the sensitivity and specificity of
diagnostic tests in the absence of a gold standard (Rindskopf and Rindskopf,
1986; Yang and Becker, 1997) and the analysis the agreement between raters
(Uebersax and Grove, 1990).

Despite the increased popularity of LC analysis in a broad range of re-
search areas, no specific attention has been paid to power analysis for LC
models. However, as in the application of other statistical methods, users of
LC models wish to confirm the validity of their research hypotheses. This
requires that a study has sufficient statistical power; that is, that it is able
to confirm a research hypothesis when it is true. Also reviewers of journal
publications and research grant proposals often request sample size and/or
power computations (Nakagawa and Foster, 2004). However, in the liter-
ature on LC analysis, methods for sample size and/or power computation
as well as a thorough study on the design factors affecting the power of
statistical tests used in LC analysis are lacking.

In this paper, we present a method for assessing the power of tests related
to the class-specific response probabilities, which are the parameters of main
interest in LC analysis. Relevant tests include tests for whether response



probabilities are equal across latent classes, whether response probabilities
are equal to specific values, whether response probabilities are equal across
response variables (indicators), and whether sensitivities or specificities are
equal across indicators (Goodman, 1974; Holt and Macready, 1989; Ver-
munt, 2010b). Since the class-specific response probabilities are typically
parameterized using logit equations (Formann, 1992; Vermunt, 1997), as
in logistic regression analysis, hypotheses about these LC model parameters
can be tested using Wald tests (Agresti, 2002). The proposed power analysis
method is therefore referred to as a Wald based power analysis.

For logistic regression models, Demidenko (2007, 2008) and Whittemore
(1981) described the large-sample approximation for the power of the Wald
test. In this paper, we show how to use this procedure in the context of LC
analysis. An important difference compared to standard logistic regression
analysis is that in a LC analysis the predictor in the logistic models for
the responses, the latent class variable, is unobserved. This implies that
the uncertainty about the individuals’ class memberships should be taken
into account in the power and sample size computation. As will be shown,
factors affecting this uncertainty include the number of classes, the class
proportion, the strength of the association between classes and indicator
variables, and the number of indicator variables involved (Collins and Lanza,
2010; Vermunt, 2010a).

The remainder of this paper is organized as follows. Section 2 presents
the LC model for dichotomous responses and discusses the relevant hy-
potheses for the parameters of the LC model. Section 3 discusses power
computation for Wald tests in LC analysis and, moreover, shows how LC
specific design factors affect the power via the information matrix. Section
4 presents a numerical study in which we assess the performance of the pro-
posed method and illustrates power/sample size computation for different
scenarios of the relevant design factors. In the last section, we provide a
brief discussion of the main results of our study.

2 The LC model

The LC model is a probabilistic clustering or unsupervised classification
model for dichotomous or categorical response variables (Goodman, 1974;
McCutcheon, 1987; Hagenaars, 1988; Magidson and Vermunt, 2004; Ver-
munt, 2010b). Taking the dichotomous case as an example, let y;; be the
value of response pattern ¢ for the binary variable Yj, for j = 1,2,3,...,p,
where y;; = 1 represent a positive response and 0 a negative response. We



denote the full-response vector by y;. For example, for p = 3, y; takes on
one of the following eights triplets of 0 and/or 1’s:

{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}.

The three response variables could, for example, represent the answers to the
following questions: “Do you support gay marriage?”, “Do you support a
raise of minimum wages?”, and “Do you support the initiative for health care
reform?”. In a sample of size n persons, a particular person could answer
these questions with ‘no’, ‘yes’, and ‘yes’, respectively, in which case the
response pattern for this subject becomes (0,1,1). In such an application,
the aim of the analysis would be to determine whether one can identify
two latent classes with different response tendencies (say republicans and
democrats), and subsequently to classify subjects into one of these classes
based on their observed responses.

In general, for p dichotomous response variables, we have 2P tuples of
0 and/or 1’s. We denote the number of individuals with response pattern
yi by n;, where the total sample size n = ZZI n;. The LC model assumes
that the response probabilities depend on a discrete latent variable, which
we denote by X with categories t = 1,2,3,...,c. The probability of having
response pattern y; is modeled as a mixture of ¢ class-specific probability
functions (Dayton and Macready, 1976; Goodman, 1974; McCutcheon, 1987;
McLachlan and Peel, 2000; Vermunt, 2010b). That is,

y“ ZP Y YZ/X _t) (1)

where P(X = t), which we also denote by 7, represents the relative size
of class t, and P(Y = y;/X = t) is the corresponding class-specific joint
response probability. The class-specific probabilities for binary variable Y}
is usually modeled using a logistic parameterization; that is, 6;; = P(Y; =
1/X =t)= %, where $3; is the log-odds of giving a positive response
on item j in class t. Moreover, assuming that the response variables are
independent within classes — which is referred to as the local independence
assumption — the LC model represented by equation (1) can be rewritten as
follows:

c P .. 11— 4
_ exp (Bjt) "\ < _exp(Bjr) ) Y
Pl ®) =2 m (1+exp m) M irewn) 0P
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where m; is such that 0 < m < 1 and Zle m = 1. The vector of pa-
rameter W consists of the sub-vector 7r, the class proportions, and the
sub-vector 3, the class-specific logits for the indicator variables. For ex-
ample, for ¢ = 2 and p = 3, the parameter vector will be: ¥ = (77/,6/) =
(71, P11, B21, P31, B12, P22, B32). In the application presented above, these pa-
rameters would correspond to the proportion of ‘republicans’, the log-odds
of a republican responds ‘yes’ instead of 'no’ to questions Y7, Yo, and Y3,
and the log-odds of a democrat responding ‘yes’ instead of 'no’ questions Y7,
Y5, and V5.

In general, for a LC model having ¢ classes and p binary indicator vari-
ables, we have m = ¢ — 1 + ¢ - p free model parameters. These parameters
are usually estimated by maximum likelihood (ML) (Dayton and Macready,
1976; Goodman, 1974; McLachlan and Peel, 2000; Vermunt, 2010b), which
involves seeking the values of ¥, say ¥ which maximize the log-likelihood

function:
2p

(¥) = nilog Py, ®). (3)
i=1

Maximizing the log- likelihood function in (3) produces a unique estimate
for ¥, provided that the LC model in equation (1) is identifiable. Identifi-
cation is always an issue in LC modeling (Goodman, 1974). For example,
the 2-class model with 3 dichotomous response variables we used as an ex-
ample is exactly identified. With p equal to 3, it is therefore not possible
to have more than 2 classes. In fact, one needs 5 dichotomous responses to
get an identified model with 3 latent classes. For the scenarios considered
in this paper (with p equal to 6 or 10), conditions for local identification as
described by Goodman (1974) are satisfied.

Typically, researchers using LC models do not only wish to obtain point
estimate for the W parameters, but are also interested in tests concerning
these parameters. For simplicity of exposition we will focus here on a single
type of test, which in most applications is the test of main interest. That
is, the test to determine whether there is a significant association between
the latent classes and a particular outcome variable. Inference regarding
this association involves testing the null hypothesis stating that the response
logit does not differ across latent classes for the indicator variable concerned.
This null hypothesis can be formulated as Hg : 81 = Bj2 = ... = Bj, for
j=1,2,3,...,p. An equivalent formulation of this hypothesis is

Hy:Bj1—Bj2=0
Bj1 —Bj3 =0



Bijr — Bje = 0.
Or, using matrix notation, as Ho : HB3; = 0, where H is a ¢ — 1 by ¢ design
matrix with linear contrasts and 8; is a ¢ by 1 column vector with the
parameters for Yj, i.e., 5; = (Bj1, Bj2, ---, Bje). Under the null hypothesis of
no association, the difference 3,1 — 8 occurs by chance alone, implying that
the indicator does not contribute to the definition of classes in a statistically
significant way.

As already indicated in the introduction section, various other types of
hypotheses concerning the class-specific response logits may be of interest.
Examples include tests for whether j; is equal to a particular value (e.g.,
f11 = 1), whether the Bj+ parameters are equal across two or more items
(e.g., 1t — P2t = 0), and whether the value is the opposite of the value for
another class (e.g., 511+ 612 = 0) (Goodman, 1974). In medical research, we
may be interested in comparing the sensitivity and specificity of diagnostic
tests (see, for example Yang and Becker (1997)), yielding hypotheses such as
B11 — P21 = 0 and B2 — P22 = 0, respectively. Note that all these hypothesis
are special cases of the general form H3 = 0.

3 Wald based power analysis for LC models

3.1 The Wald statistic and its asymptotic properties

One of the properties of the ML estimator is that, under certain regularity
conditions (McHugh, 1956; Birch et al., 1964; White, 1982; Hausman and
McFadden, 1984), the estimator 7 converges in probability to ¥ as the
sample size tends to infinity. That is, for any sequence ¥, we have ¥,, £
W. The other interesting property of the ML estimator is that it has a
limiting normal distribution. More specifically, for large sample size n,

\/ﬁ(‘i’n - ‘I’) — N(O7V)7 (4)

where — denotes convergence in distribution, V = I"1(¥) is the asymp-
totic co-variance of \/n¥,, and I(¥) is the m by m information matrix
(McHugh, 1956; Redner, 1981; Rencher, 2000; Wald, 1943; Wolfe, 1970).
The latter has the following block structure:



I(‘I’) — L = {(ﬂt?ﬂ-s)} I, = {(T‘-t?ﬁjs)}
Iy = {(Bjt,ms)} Lo =A{(Bjt, Brs)} |’
for t,s = 1,2,3,.....,cand k,j = 1,2,3,...,p. The sub-matrices Iy, I», I3,
and I are of dimensions c—1byc—1,¢c—1byc-p, c-p by ¢c—1, and
c-p by c-p, respectively. The terms between braces indicate the parameters
involved in the sub-matrix concerned.
Using the algebraic properties of block matrices, it follows that

Al ~1;'I,B~!

—_ 711 —
V=14")= Al B , ()

where A = I — IgIZlIg and B =1y — 1311_112. A necessary condition for
A to be invertible, which is a requirement to obtain the covariance matrix
of W,,, is that both I; and I, are non-singular matrices (Rencher, 2000). In
the Appendix, we provide the expressions for the Iy, Is, Is, and 14 for the
LC models of interest.

The consistency and multivariate normality discussed above apply to the
estimators of the component parameters as well. That is, using the property
of multivariate normal random variables which states that the sub-vectors
of a multivariate normal are also normal, the limiting distributions of & and
[3 become

7tn, — N(m, %A—l) (6)
B, — N8, B 7)

Also sub-vector ,Bj of B is normally distributed, with mean 3; and with
co-variance V, being a ¢ by ¢ sub-matrix of %B_l. In the remaining part
of the paper, we focus on this 3;.

Using the Continuous Mapping Theorem (Mann and Wald, 1943), for a
design matrix H that defines the contrasts on the null hypothesis, one can
show that HBj — N(H,Bj,HVjH/). The quadratic form of the test for
the hypothesis Ho : HB3; = 0 yields the well-known Wald statistic W7 i.e.,

W =n ((HA) (HV,H) " (HE)) (8)

Under the null hypothesis, that is, if Hp : H3; = 0 holds, the Wald
statistic W has an asymptotic (central) chi-square distribution with ¢ — 1
degrees of freedom (Rencher, 2000; Wald, 1943). That is,

W=n ((HB]‘)/(HVJ‘H/)A(HB]‘D — X(e—1): (9)
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Under the alternative hypothesis, W follows a non-central chi-square distri-
bution with ¢ — 1 degrees of freedom and non-centrality parameter A. That
is,

W =n ((H)) (HV;H) ™ (HB))) — .y (10)

where \ = n(H,B]-),(HVjH/)_l(Hﬂj).

3.2 Power and sample size computation

With the establishment of the distribution of the test statistic under the null
and alternative hypothesis and the availability of a closed form expression for
the non-centrality parameter A, it becomes possible to compute the power
of the test for a given sample size or the sample size for a given power. As
in any power analysis, we first have to define the population model. In our
case, this involves defining the number of classes and the number of response
variables, and, moreover, specifying the values for the class proportions
and the class-specific logits 3. For the assumed population model, we can
compute the inverse information matrix V which appears in the formula of
the non-centrality parameter.

Once the population parameters are set and V is computed, power com-
putation for a given sample size and required sample size computation for a
given power proceeds along the steps described below.

Steps for power computation

Power computation proceeds as follows:

1. Compute the non-centrality parameter A for the specified sample size
n (use the expression in equation 10).

2. For a given value of type I error «, read the 100(1 — «v) percentile value
from the (central) chi-square distribution. That is, find X%l_a)(c -

1) such that under the null hypothesis, P (W > X% )(c - 1)) = a.

11—«
This value is referred as a critical value of a test.

3. Compute the power as the probability that a random variable W from
the non-central chi-square distribution (with non-centrality parameter
A given in step 1) will assume a value greater than the critical value
obtained under step 2.



Steps for sample size computation

Sample size computation proceeds as follows:

1. For a given value of a, read the 100(1 — «) percentile value from
the (central) chi-square distribution (see the second step for power
computation).

2. For a given power and the critical value obtained in step 1, find the
non-centrality parameter A such that, under the alternative hypoth-

esis, the condition that power is equal to P (W > X%l—a) (c— 1)) is
satisfied.

3. From the expression for A, solve for the sample size as follows: n =

, , —1
A ((H8) (BVH)HB))

Software implementation

The above procedure for power computation can be applied using existing
software for LC analysis that allows defining starting values or fixed values
for the logit parameters and that provides the (inverse) information matrix
as output, for example, using LEM (Vermunt, 1997), Mplus (Muthén and
Muthén, 2012), or Latent GOLD (Vermunt and Magidson, 2013b). More
specifically, with a LC analysis software package, one can obtain the inverse
information matrix V. This will typically require the following two steps:

A. Create a data set containing all possible data patterns and with the
expected frequencies according to the LC model of interest as weights.
This can be achieved by running the LC software with the population
parameters specified as fixed values and with the estimated frequencies
as requested output. The created output is, in fact, a data set which
is exactly in agreement with the population model. Such a data set is
sometimes referred as an ’exemplary’ data set (()Brien, 1986).

B. Analyze the (exemplary) data set create in step A with the LC model of
interest and request the variance-covariance matrix of the parameters
(the inverse information matrix) as output. Note that when analyzing
a data set which is exactly in agreement with the model, the observed
information matrix is identical to the expected information matrix.
The same applies to the approximate observed information matrix
based on the outer-product of the gradient contributions of the data
patterns (see Appendix).



The above two steps provide us with the inverse information matrix V.
The actual power or sample size computations using the steps described
above can subsequently be performed using software that allows performing
matrix computations and that has functions for obtaining the critical value
from the chi-squared distribution and the non-centrality value from the non-
central chi-squared distribution. For this purpose, one can use R. An R
script is available from the first author.

The procedure described above is fully automated in version 5.0 of the
Latent GOLD program (Vermunt and Magidson, 2013b). Users define the
population model and specify either the sample size or the required power.
The program computes the power or the required sample size for the Wald
tests it reports by default, as well as for other Wald tests defined by the
user. In the Appendix, we give an example of the Latent GOLD syntax for
power computation.

3.3 Design factors affecting the power of a Wald test in LC
models

Now let us look in more detail at the factors affecting the power of the Wald
test in LC models. It should be noted that the power is determined by the
value of the type I error and the value of the noncentrality parameter A.
The larger the type I error and the larger A, the larger the power. As can
be observed from equation (10), A is a function of the sample size n, the
precision of the estimator (V), and the effect size H3;. Note that in our
case the effect size is the difference between the class-specific 5 parameters
or, equivalently, the strength of the association between the classes and the
response variable concerned.

Specific for LC models is that the precision of the estimator is affected by
the fact that class membership is unobserved; that is, that we are uncertain
about a person’s class membership. Recall from equation (5) that the block
of V concerning the  parameters is obtained as the inverse of B = I4 —
Ingllg. This means that B becomes larger when I and I; become larger
and when Iy and I3 become smaller. To show how the uncertainty about
the class membership affects B, let us have a closer look at I, which is the
most important term in B. Its elements are obtained as follows:

Li(Bjt, Brs) = ZP = t/y;) P(X = 5/Y:)(yij — 0jt) (yir. — Os) P(y;), (11)

where 6, = exp(,@’jt)/(1+exp(ﬁjt)). As can be seen, specific for a LC analysis
is that the elements of the information matrix are not only a function of the
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model parameters, but also of the posterior class membership probabilities
P(X = t/y;). For example, the contribution of response pattern i to the
information on parameter B;; equals P(X = t/y;)%(vij — 0j1)*P(y;). In
other words, response pattern i contributes with “weight” P(X = t/y,)? to
the information on a parameter of class t. The contribution to total of the
parameters of all ¢ classes equals > ¢_, P(X = t/y;)?. This shows that the
information is maximum when P(X = t/y,) equals 1 for one class and 0 for
the other classes, in which case the total contribution equals 1. This occurs
when the classes are perfectly separated or when the class membership is
observed rather than latent.

Also the entries of I; become larger when the posterior class membership
probabilities get closer to either 0 or 1. The matrices Iy and I3 capture the
overlap in information between the class proportions and the 5 parameters.
The elements of this matrix are 0 when separation is perfect and become
larger with lower class separation. The Appendix provides the exact formu-
lae for these matrices.

The implication of the above is that the power can be increased by in-
creasing the separation between the classes; i.e., by influencing the factors
affecting the posterior class membership probabilities. The posterior class
membership probabilities depend on the number of classes, the class propor-
tions, the class-specific conditional response probabilities, and the number of
response variables (Collins and Lanza, 2010; Vermunt, 2010a). More specif-
ically, class separation is better with less latent classes, a more uniform
class distribution, response variables which are more strongly related to the
classes, and a larger number of response variables.

Note that the conditional response probabilities have a dual role. The
more the conditional response probabilities 0;; or the logit parameters 3;;
differ across latent classes, the larger the effect size and thus also the higher
the power of the test for the parameters of indicator variable Y;. However,
a larger difference between classes in the response on Yj also increases the
class separation, and thus the power of all tests, also the ones for the other
response variables.

4 Numerical study

In this section, we present a numerical study that illustrates the Wald based
power analysis for different configurations of design factors. As was shown
in section 3, in addition to the usual factors (i.e., sample size, level of sig-
nificance, power, and effect size), power analysis in LC models involves the
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specification of design factors such as the number of classes, the number of
observed response variables, the class sizes, and the class-specific probabil-
ities (or logits) for the response variables, which we refer to as LC-specific
design factors.

As already indicated in section 3.3, LC-specific design configurations
yielding better separated classes, or posterior class membership probabilities
which are closer to either zero or one, yield more precise estimators, and as
a result larger power of the Wald tests. Therefore, in order to be able to
compare different design configuration, it is important to have a measure for
class separation. For this purpose, we use the entropy based R-square. The
entropy of the posterior class membership probabilities for data pattern i,
denoted by Ej;, equals Y i | —P(X = t/y;)log P(X =t/y;). Note that E;
gets closer to 0 when the posteriors are closer to 0 and 1. The average entropy
across data patterns, denoted by FE, equals Z?il E;P(y;). The entropy
based R-square can now be obtained as follovvs:Rgntropy =1—FE/E(0). Here,
E(0) is the maximum entropy given the class proportions; that is, F(0) =
Yo —P(X =t)log P(X =1t).

4.1 Manipulation of the design factors

The LC-specific design factors that were varied are the number of classes,
the number of indicator variables, the class-specific conditional probabilities,
and the class proportions. The number of classes varied from 2 to 4 (i.e.,
¢ =2,3,4). The number of indicator variables was set to p = 6 and p = 10.
The class-specific conditional probabilities ;; were 0.7, 0.8, and 0.9 (or,
depending on the class, 1-0.7, 1-0.8, and 1-0.9), corresponding to a weak,
medium, and strong association between classes and indicator variables. The
6+ were high for class 1, say 0.8, and low for class ¢, say 1-0.8; with ¢ = 3,
class 2 had high 6;; values for the first half of the items and low values for
the other items; with ¢ = 4, class 2 had low 0; values for the first half of the
items and high values for the other items, and class 3 had high 6;; values
for the first half of the items and low values for the other items. The class
sizes were equal or unequal, where for the unequal conditions we used class
proportions of (0.75, 0.25), (0.5, 0.3, 0.2), (0.6, 0.3, 0.1), and (0.4, 0.3, 0.2,
0.1), respectively.

In addition to the four LC-specific design factors, we have to define the
sample size, power, level of significance, and effect size(Cohen, 1988). For
power computation, the sample size was set to 75, 100, 200, 300, 500, 700,
1000, and 1500, whereas for sample size determination, the power was set
to .8, .9, and .95. The type I error was fixed to 0.05. The effect size is

12



already specified via the response probabilities 6;;, where it should be noted
that the logit coefficients 3;; for which the Wald tests are performed equal

Bjt = log Ot/ (1 — 0;t).

4.2 Effects of design factors on power and sample size

Table 1: Entropy based R-square values for different combinations of LC-
specific design factors

Class size
Equal Unequal More unequal

Number of classes c=2 .818 811
(for p = 6 and 6;,=0.8) c=3 .627 .624
c=4 .594 .589
Number of indicators p==6 627 .624
(for ¢ = 3 and 60;;=0.8) p=10 .790 788

0;1=0.7  .332 .330 314

Class-indicator associations 0;1=0.8  .627 .624 .607

(for ¢ = 3, and p = 6) 0;1=0.9  .880 .879 871

Note: the ’unequal’ and ’more unequal’ class size conditions refer to the level of deviation from uniform class
distribution. For example, for ¢ = 3, we used (0.5, 0.3, 0.2) and (0.6, 0.3, 0.1) to represent a smaller and larger

deviation from a uniform class distribution, respectively.

Table 1 presents the entropy based R-square for several combinations
of the LC-specific design factors. It shows how the value of this R-square
measure is affected by the number of classes, the class proportions, the
number of indicators, and the strength of the class-indicator associations,
given specific values of the other design factors. As can be seen, the smaller
the number of the classes, the larger the number of indicator variables,
and/or the stronger the class-indicator associations, the larger the value of
the entropy based R-square. Moreover, the more equal the class sizes, the
larger the entropy. It can also be seen that the entropy based R-square may
become very low when all conditions are less favorable.

To investigate the effect of class separation on the power of the Wald test
for the significance of a class-indicator association, the power is computed
for five of the design configurations that were presented in Table 1 under
different sample sizes. The results are presented in Table 2. From this table,
we can see that the power of a test in LC analysis strongly depends on the
class separations. When classes are well separated, a sample size of 100 can
be large enough to achieve a power of .8 or more. With a class separation

13



Table 2: Estimated power (%) for different class separation levels and dif-
ferent sample sizes

Entropy based R-square
Sample size .314 .330 .607 .624 .790

75 7 12 22 51 94
100 8 14 28 64 98
200 10 24 52 92 100
300 13 34 71 99 100
500 19 93 91 100 100
700 25 69 98 100 100
1000 34 84 100 100 100
1500 49 96 100 100 100

Hg : Bj1 = Bj2 = ... = Bjc for which j =1 and ¢ = 3.

of .330, .607, and .624, a sample size of 900, 370, and 140, respectively, is
required to achieve such a power. With very badly separated classes as in
the worst condition, even a sample size of 1500 is not large enough to achieve
a power of .8.

Table 3: Required sample size for different configurations of LC-specific
design factors and different power levels

Number of classes Number of indicators
Power c¢=2 c=3 c=4 p==6 p=10
.8 33 82 83 82 49
.9 45 108 108 108 64
.95 55 131 130 131 78
Class-indicator Class
associations sizes
Power Low Medium High Equal Unequal More unequal
.8 419 82 34 82 141 371
9 550 108 45 108 185 487
.95 671 131 55 131 226 594

Note: The baseline model is the model with ¢ = 3, p = 6, equal size classes, and medium association between

classes and indicators. One design factor is varied to get the other conditions reported in the table.

Table 3 reports the required sample size for a specified power for vari-
ous combinations of LC-specific design factors. We use the condition with
c =3, p = 6, equal size classes, and medium class-indicator associations as
the baseline. This condition requires sample sizes of 82, 108, and 131, re-
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spectively, to achieve the three reported power levels. The other conditions
are obtained by varying one design factor at the time.

The results in Table 3 show that, as expected, the required sample size
depends on the number of classes, the number of indicators, the strength
of the class-indicator associations, and the class sizes. More specifically,
keeping the other LC-specific design factors constant, the larger the number
of classes and the fewer the number of indicators, the larger the required
sample size to achieve the specified power level. The strength of the class-
indicator associations turns out to be one of the key factors affecting the
power in LC models; for example, to obtain a power of .80, we need at least
419 observations when these associations are weak, but only 34 observations
when these are strong. Moreover, many more observations are required
when the class sizes are unequal than when they are equal; for example, to
achieve a power of .95, we need approximately 130, 225, and 600 observations
for the (0.334, 0.333, 0.333), (0.5, 0.3, 0.2), and (0.6, 0.3, 0.1) condition,
respectively.

In summary, these results show that the strength of the class-indicator
associations and the class distribution have a much stronger impact on the
power than the number of classes and the number of indicator variables.
The fact the strength of the class-indicator association is so important can
be explained by the fact it affects both the class separation and the effect
size. For example, for P = 6, C' = 3, and equal class sizes, when the 0
value changes from .9 to .7, the class separation drops from .880 to .332
and the difference between classes in their conditional response probabilities
drops from .8 to .4. Thus, a 6j; value of .9 yields not only a much larger
R-square value but also a much larger effect size than a 6;; value of .7. The
class sizes are important because the power of a test regarding difference
between groups depends strongly on the size of the smallest group.

4.3 Performance of the power computation procedure

An important question is whether the theoretical power computed using the
formulae presented in this paper agrees with the actual power when using
the Wald with empirical data. To answer this question, we conducted a
simulation study in which the theoretical power is compared with the actual
power in data sets generated from the assumed population model. Note that
the actual power equals the proportion of simulated data sets in which the
null hypothesis is rejected.

The population model was three-class LC model with six indicators and
equal class sizes. We varied the strength of the class-indicator associations
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(same three levels as above) and the sample size (75, 100, 200, 300, 500,
700, and 1000). The actual power was computed using 500 samples from
the population under the alternative hypothesis. For each of these samples,
the LC model is estimated and it is checked whether the Wald value for the
test of interest exceeds the critical value.

Table 4: Theoretical and simulated power of the Wald test

Class- Sample size

indicator

associations Method 75 100 200 300 500 700 1000

Weak Theoretical .200 .254 470 .649 .869 .958 .994
Simulated .145 .234 444  .628 .838  .920  .960

Medium Theoretical .762 .877 995 1.000 1.000 1.000 1.000
Simulated .714 .848  .944  .992 1.000 1.000 1.000

Strong Theoretical .989 .999 1.000 1.000 1.000 1.000 1.000
Simulated .986 1.000 1.000 1.000 1.000 1.000 1.000

The power presented here is for the null hypothesis Hg : B;1 = B;2 = ... = fB;. for which j = 1. Moreover,

¢ = 3. p =6, and class sizes are equal.

Table 4 presents the theoretical and actual power of the Wald test under
the investigated simulation conditions. As can be seen, both measures show
the same overall trend, namely that the power increases with increasing
sample size and increasing effect size (and class separation). However, the
actual power of the Wald test is always slightly lower than its theoretical
value, where the differences are larger for the smaller sample size and the
weaker class separation conditions. An explanation for these differences is
that the estimated asymptotic variance-covariance matrix used in the simu-
lated power computations overestimates the variability of the 8; parameters.
On the other hand, substantive conclusions are the same for the simulated
and theoretical power levels reported in Table 4. With the small effect size
and the corresponding weak class separation condition, a sample size of 500
is needed to achieve a power of .8; with the medium class separation, a sam-
ple size of 100 suffices; and with the strong class separation, less than 75
observations are needed.

5 Discussion and Conclusion

In LC analysis, the association between class membership and the response
variables is usually modeled using a logistic parametrization. This paper
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dealt with power analysis for Wald tests for these logit coefficients, for ex-
ample, for the hypothesis of no association between class membership and
the response provided on one of the indicators. We showed that, in addi-
tion to the usual design factors — i.e., effect size, sample size, and level of
significance — the power of Wald tests in LC models depends on the amount
uncertainty about the subjects’ class memberships. More specifically, fac-
tors affecting the class separation also affect the power. The most important
of these LC-specific design factors are the number of classes, the class pro-
portions, the strength of the class-indicator associations, and the number of
indicator variables.

A numerical study was conducted to illustrate the proposed power and
sample size computation procedures. More precisely, it was shown how class
separation — quantified using the entropy-based R-square — is affected by the
number of classes, the class proportions, the strength of the class-indicator
associations, and the number of indicator variables, and, moreover, how
class separation affects the power. It turned out that under the most favor-
able conditions a sample size of 100 suffices to achieve a power of .8 or .9.
For the situation where the entropy-based R-square is small, a considerably
larger sample size is required. It was shown that under the least favorable
conditions, even a sample size of 2000 did not suffice to achieve an accept-
able power level. This demonstrates the importance of performing a power
analysis prior to conducting a study that will make use of LC analysis.

If power turns out to be too low given the planned sample size, instead
of increasing the sample size, one may try to increase the class separation,
for example, by using a larger number of indicators or by improving the
quality of the indicators. Note that improving the quality of indicators has
a dual effect on the power of the Wald test for class-indicator associations:
It increases both the effect size and the class separation. This dual effect
could be seen in our numerical study where we saw a dramatic reduction of
the required sample size when the 0;; value increased from .7 to .9.

A simulation study was conducted to evaluate whether the theoretical
power corresponds with the actual power of the Wald test. It turns out that
the estimated power obtained with the formulae provided in this paper is
slightly larger than the actual power, where we see a larger overestimation
for smaller sample sizes and lower power levels. This implies that to be on
the save side, to achieve the specified power, a slightly larger sample size
may be used than the estimated sample size.

In this paper, we restricted ourselves to power computations for Wald
tests. However, also likelihood-ratio test are often used in LC models, either
for testing the same kinds of hypotheses as discussed here or for comparing
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models with different number of latent classes. Future research will focus
on power computation for likelihood-ratio tests in LC models.

Another limitation of the current work is that we restricted ourselves to
simple LC models. In future work, we will investigate whether the methods
discussed in this paper can be extended to more complex LC models, such
LC models with covariates, latent Markov models, mixture growth models,
and mixture regression models.

6 Appendix

6.1 Elements of the information matrix in a LC model for
binary responses

The elements of the information matrix I(¥), with v = (77/, ,8/), equal to
minus the expected value of the second-order partial derivatives of the log-
likelihood function defined in (3) with respect to the free parameters divided
by the sample size. In a LC model, these have the following rather simple
from:

82l(‘I')> _ — Olog P(y;,¥)0log Py, ¥)
S0ndv,) " =2 By 0,

This shows that the computation of the information matrix requires solving

the first-order partial derivatives 610%715(%). For a class-proportion m; and a

class-specific response logit 3¢, these take on the following form:

I(¢1,¢q) = —FE < P(y;, ).

dlog P(y;,¥) P(X =t/y;) PX=c/y,)

oy T e ’

dlog P(y;, ¥) P(X = t/y;)(yij — 0j1)-
0B;

This yields the following forms for the entries of the sub-matrix Iy, I,
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Ig, and I4:

2p B _ B B
Limm) = 3 (P X =t/y) PX= C/yz->> (P<X = s/y)  P(X =c/y)

Tt T Ts

i=1
2P

P(X =t/y,) P(X=c/y,
3 ( ( /yi)  P( /Y;)

Tt Te

Io(7¢, Bjs) =

i=1
P(X = s/y;) B P(X =c/y,)

Ts Te

op
Ta(Bem) = 3P =t~ 6
=1

op
Li(Bjt: Brs) = ZP(X =1/Y:)(yi5 — 056) P(X = s/9:) (Yik — Oks) P(y;, ¥).
i=1

6.2 An example of the Latent GOLD setup for Wald based
power computation

The Latent GOLD 5.0 (Vermunt and Magidson, 2013a) Syntax system im-
plements the power computation procedure described in this paper. In order
to perform such a Wald power computation, one should first create a small
“example” data set; that is, a data set with the structure of the data one is
interested in. With six binary response variables (y1 through y6), this file
could be of the form:

yl y2 y3 y4 y5 y6
0O 0 0 0O 0 0

which is basically a data set with a single observation with a response of 0
on all six variables.

For this small data set, one defines the model of interest and requests
the power or the required sample size using the output options. This is done
as follows using the Latent GOLD “options”, “variables”, and “equations”
sections:

options
output parameters standarderrors
WaldPower=<number> WaldTest=’fileName’;
variables
dependent y1 2, y2 2, y3 2, y4 2, y5 2, y6 2;
latent x nominal 2;
equations
x <- 1;
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yl - y6 <= 1 | x;
{0.0000000000

1.386294361 -1.386294361
.386294361 -1.386294361
.386294361 -1.386294361
.386294361 -1.386294361
.386294361 -1.386294361
.386294361 -1.386294361}

N e e

In the “variables” section, we define the variables which are in the model
and also their number of categories. These are the six response variables and
the latent variable “x”. The “equations” section specifies the logit equations
defining the model of interest, as well as the values of the population param-
eters. Note that the value 1.386294361 for a logit coefficients corresponds
to a conditional response probability of .80.

The “output” line in the “options” section lists the output requested.
With WaldPower=<number>, one requests a power or sample size compu-
tation. When using a “number” between 0 and 1, the program reports the
required sample size for that power, and when using a values larger than 1,
the program reports the power obtained with that sample size. The optional
statement WaldTest="‘filename’ can be used to define user-specific Wald test
in addition to the test which are provided by default. The linear contrasts
for the user-defined hypotheses of interest are defined in a text file.
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